ipex-llm/python/llm/dev/benchmark/harness/README.md
Chen, Zhentao d4dffbdb62 Merge harness (#9319)
* add harness patch and llb script

* add readme

* add license

* use patch instead

* update readme

* rename tests to evaluation

* fix typo

* remove nano dependency

* add original harness link

* rename title of usage

* rename BigDLGPULM as BigDLLM

* empty commit to rerun job
2023-11-02 15:14:19 +08:00

1.5 KiB

Harness Evalution

Harness evalution allows users to eaisly get accuracy on various datasets. Here we have enabled harness evalution with BigDL-LLM under Open LLM Leaderboard settings. Before running, make sure to have bigdl-llm installed.

Install Harness

git clone https://github.com/EleutherAI/lm-evaluation-harness.git
cd  lm-evaluation-harness
git checkout e81d3cc
pip install -e .
git apply ../bigdl-llm.patch
cd ..

Run

run python llb.py. llb.py combines some arguments in main.py to make evalutions easier. The mapping of arguments is defined as a dict in llb.py.

Evaluation on CPU

python llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 int4 nf4 --device cpu --tasks hellaswag arc mmlu truthfulqa --output_dir results/output

Evaluation on Intel GPU

python llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 int4 nf4 --device xpu --tasks hellaswag arc mmlu truthfulqa --output_dir results/output

Results

We follow Open LLM Leaderboard to record our metrics, acc_norm for hellaswag and arc_challenge, mc2 for truthful_qa and acc for mmlu. For mmlu, there are 57 subtasks which means users may need to average them manually to get final result.