* add harness patch and llb script * add readme * add license * use patch instead * update readme * rename tests to evaluation * fix typo * remove nano dependency * add original harness link * rename title of usage * rename BigDLGPULM as BigDLLM * empty commit to rerun job
82 lines
4.7 KiB
Python
82 lines
4.7 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
# this code is copied from llama2 example test, and added performance test
|
|
import argparse
|
|
import os
|
|
import subprocess
|
|
|
|
task_cmd = "--num_fewshot {} --tasks {}"
|
|
|
|
task_map = {
|
|
"hellaswag": task_cmd.format(10, "hellaswag"),
|
|
"arc": task_cmd.format(25, "arc_challenge"),
|
|
"truthfulqa": task_cmd.format(0, "truthfulqa_mc"),
|
|
"mmlu": task_cmd.format(5, "hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions")
|
|
}
|
|
|
|
prec_to_arg = {
|
|
"bigdl-llm": {
|
|
"int4": "load_in_low_bit=sym_int4",
|
|
"nf4": "load_in_low_bit=nf4",
|
|
"nf3": "load_in_low_bit=nf3",
|
|
"fp8": "load_in_low_bit=fp8",
|
|
"fp4": "load_in_low_bit=fp4",
|
|
"bf16": "dtype=bfloat16",
|
|
"fp16": "dtype=float16",
|
|
},
|
|
"hf-causal": {
|
|
"nf4": "bnb_type=nf4",
|
|
"bf16": "dtype=bfloat16",
|
|
"fp16": "dtype=float16",
|
|
}
|
|
}
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model", required=True, type=str)
|
|
parser.add_argument("--pretrained", required=True, type=str)
|
|
parser.add_argument("--precision", required=True, nargs='+', type=str)
|
|
parser.add_argument("--device", required=True, type=str)
|
|
parser.add_argument("--batch", default=1, type=int)
|
|
parser.add_argument("--tasks", required=True, nargs='+', type=str)
|
|
parser.add_argument("--output_dir", type=str)
|
|
args = parser.parse_args()
|
|
print(args.model)
|
|
print(args.tasks)
|
|
basic_cmd = "python lm-evaluation-harness/main.py --model {} --model_args pretrained={},{} --no_cache --device {} --batch_size {} {} --output_path {} "
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
index = 1
|
|
total = len(args.precision) * len(args.tasks)
|
|
for prec in args.precision:
|
|
prec_arg = prec_to_arg[args.model][prec]
|
|
for task in args.tasks:
|
|
output_path = f"{args.model}_{prec}_{args.device}_{task}"
|
|
task_arg = task_map[task]
|
|
cmd_exec = basic_cmd.format(args.model, args.pretrained, prec_arg, args.device, args.batch,
|
|
task_arg, f"{args.output_dir}/{output_path}")
|
|
print(f"Running job {index}/{total}:\n{cmd_exec}")
|
|
index += 1
|
|
with open(f"{args.output_dir}/log_{output_path}.txt", "w") as f:
|
|
return_code = subprocess.call(cmd_exec, shell=True, stderr=f, stdout=f)
|
|
if return_code == 0:
|
|
print("Successful")
|
|
else:
|
|
print("Failed")
|
|
|
|
main()
|