ipex-llm/python/llm/example/GPU
Shengsheng Huang db0d129226 Revert "Add rwkv example (#9432)" (#10264)
This reverts commit 6930422b42.
2024-02-28 11:48:31 +08:00
..
Applications Update AutoGen README (#10255) 2024-02-28 11:34:45 +08:00
Deepspeed-AutoTP
HF-Transformers-AutoModels Add Deepseek-6.7B (#9991) 2024-02-28 11:36:39 +08:00
LLM-Finetuning
ModelScope-Models
PyTorch-Models Revert "Add rwkv example (#9432)" (#10264) 2024-02-28 11:48:31 +08:00
Speculative-Decoding
vLLM-Serving
README.md

BigDL-LLM Examples on Intel GPU

This folder contains examples of running BigDL-LLM on Intel GPU:

  • Applications: running LLM applications (such as autogen) on BigDL-LLM
  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on BigDL-LLM (using the standard AutoModel APIs)
  • LLM-Finetuning: running finetuning (such as LoRA, QLoRA, QA-LoRA, etc) using BigDL-LLM on Intel GPUs
  • vLLM-Serving: running vLLM serving framework on intel GPUs (with BigDL-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with BigDL-LLM low-bit optimized models) on Intel GPUs
  • PyTorch-Models: running any PyTorch model on BigDL-LLM (with "one-line code change")
  • Speculative-Decoding: running any Hugging Face Transformers model with self-speculative decoding on Intel GPUs
  • ModelScope-Models: running ModelScope model with BigDL-LLM on Intel GPUs

System Support

1. Linux:

Hardware:

  • Intel Arc™ A-Series Graphics
  • Intel Data Center GPU Flex Series
  • Intel Data Center GPU Max Series

Operating System:

  • Ubuntu 20.04 or later (Ubuntu 22.04 is preferred)

2. Windows

Hardware:

  • Intel iGPU and dGPU

Operating System:

  • Windows 10/11, with or without WSL

Requirements

To apply Intel GPU acceleration, therere several steps for tools installation and environment preparation. See the GPU installation guide for mode details.