Add Deepseek-6.7B (#9991)
* Add new example Deepseek * Add new example Deepseek * Add new example Deepseek * Add new example Deepseek * Add new example Deepseek * modify deepseek * modify deepseek * Add verified model in README * Turn cpu_embedding=True in Deepseek example --------- Co-authored-by: Shengsheng Huang <shengsheng.huang@intel.com>
This commit is contained in:
parent
2524273198
commit
59861f73e5
11 changed files with 684 additions and 2 deletions
|
|
@ -196,6 +196,7 @@ Over 40 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
|
|||
| Yuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/yuan2) |
|
||||
| Gemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/gemma) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/gemma) |
|
||||
| DeciLM-7B | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deciLM-7b) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/deciLM-7b) |
|
||||
| Deepseek | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deepseek) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/deepseek) |
|
||||
|
||||
|
||||
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
|
||||
|
|
|
|||
|
|
@ -87,6 +87,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
|
|||
| Phi-2 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-2) |
|
||||
| Yuan2 | [link](example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](example/GPU/HF-Transformers-AutoModels/Model/yuan2) |
|
||||
| DeciLM-7B | [link](example/CPU/HF-Transformers-AutoModels/Model/deciLM-7b) | [link](example/GPU/HF-Transformers-AutoModels/Model/deciLM-7b) |
|
||||
| Deepseek | [link](example/CPU/HF-Transformers-AutoModels/Model/deepseek) | [link](example/GPU/HF-Transformers-AutoModels/Model/deepseek) |
|
||||
|
||||
### Working with `bigdl-llm`
|
||||
|
||||
|
|
|
|||
|
|
@ -23,6 +23,5 @@ test_api:
|
|||
# - "transformer_int4_gpu" # on Intel GPU
|
||||
# - "optimize_model_gpu" # on Intel GPU
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
|
||||
# - "transformer_int4_gpu_win" # on Intel GPU for Windows
|
||||
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
||||
# - "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory)
|
||||
cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,67 @@
|
|||
# Deepseek
|
||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Deepseek models. For illustration purposes, we utilize the [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) as a reference Deepseek model.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a Deepseek model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
|
||||
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Deepseek model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'deepseek-ai/deepseek-coder-6.7b-instruct'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||
>
|
||||
> Please select the appropriate size of the Deepseek model based on the capabilities of your machine.
|
||||
|
||||
#### 2.1 Client
|
||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||
```powershell
|
||||
python ./generate.py
|
||||
```
|
||||
|
||||
#### 2.2 Server
|
||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||
|
||||
E.g. on Linux,
|
||||
```bash
|
||||
# set BigDL-LLM env variables
|
||||
source bigdl-llm-init
|
||||
|
||||
# e.g. for a server with 48 cores per socket
|
||||
export OMP_NUM_THREADS=48
|
||||
numactl -C 0-47 -m 0 python ./generate.py
|
||||
```
|
||||
|
||||
#### 2.3 Sample Output
|
||||
#### [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
||||
### Instruction:
|
||||
What is AI?
|
||||
### Response:
|
||||
|
||||
-------------------- Output --------------------
|
||||
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
||||
### Instruction:
|
||||
What is AI?
|
||||
### Response:
|
||||
AI, or Artificial Intelligence, refers to the simulation of human intelligence processes by machines, especially computer systems. It involves the creation of algorithms that allow computers
|
||||
```
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# Refer to https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
|
||||
PROMPT_FORMAT = """
|
||||
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
||||
### Instruction:
|
||||
{prompt}
|
||||
### Response:
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for deepseek model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="deepseek-ai/deepseek-coder-6.7b-instruct",
|
||||
help='The huggingface repo id for the deepseek (e.g. `deepseek-ai/deepseek-coder-6.7b-instruct`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
trust_remote_code=True)
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
# inputs_ids = tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors="pt")
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
end = time.time()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Prompt', '-'*20)
|
||||
print(prompt)
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
|
@ -0,0 +1,67 @@
|
|||
# Deepseek
|
||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Deepseek models. For illustration purposes, we utilize the [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) as a reference Deepseek model.
|
||||
|
||||
## Requirements
|
||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a Deepseek model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||
|
||||
After installing conda, create a Python environment for BigDL-LLM:
|
||||
```bash
|
||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||
conda activate llm
|
||||
|
||||
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
After setting up the Python environment, you could run the example by following steps.
|
||||
|
||||
#### 2.1 Client
|
||||
On client Windows machines, it is recommended to run directly with full utilization of all cores:
|
||||
```powershell
|
||||
python ./generate.py --prompt 'What is AI?'
|
||||
```
|
||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||
|
||||
#### 2.2 Server
|
||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||
|
||||
E.g. on Linux,
|
||||
```bash
|
||||
# set BigDL-LLM env variables
|
||||
source bigdl-llm-init
|
||||
|
||||
# e.g. for a server with 48 cores per socket
|
||||
export OMP_NUM_THREADS=48
|
||||
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
|
||||
```
|
||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||
|
||||
#### 2.3 Arguments Info
|
||||
In the example, several arguments can be passed to satisfy your requirements:
|
||||
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Deepseek model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'deepseek-ai/deepseek-coder-6.7b-instruct'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### 2.3 Sample Output
|
||||
#### [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
||||
### Instruction:
|
||||
What is AI?
|
||||
### Response:
|
||||
|
||||
-------------------- Output --------------------
|
||||
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
||||
### Instruction:
|
||||
What is AI?
|
||||
### Response:
|
||||
AI, or Artificial Intelligence, refers to the simulation of human intelligence processes by machines, especially computer systems. It involves the creation of algorithms that allow computers
|
||||
```
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from bigdl.llm import optimize_model
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# Refer to https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
|
||||
PROMPT_FORMAT = """
|
||||
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
||||
### Instruction:
|
||||
{prompt}
|
||||
### Response:
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for deepseek model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="deepseek-ai/deepseek-coder-6.7b-instruct",
|
||||
help='The huggingface repo id for the deepseek (e.g. `deepseek-ai/deepseek-coder-6.7b-instruct`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# With only one line to enable BigDL-LLM optimization on model
|
||||
model = optimize_model(model)
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
st = time.time()
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
end = time.time()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
|
@ -0,0 +1,125 @@
|
|||
# Deepseek
|
||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Deepseek models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) as a reference Deepseek model.
|
||||
|
||||
## Requirements
|
||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a Deepseek model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
|
||||
### 1. Install
|
||||
#### 1.1 Installation on Linux
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9 libuv
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
#### 2.1 Configurations for Linux
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
#### 2.2 Configurations for Windows
|
||||
```cmd
|
||||
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
|
||||
```
|
||||
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
|
||||
### 3. Runtime Configurations
|
||||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
|
||||
#### 3.1 Configurations for Linux
|
||||
<details>
|
||||
|
||||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For Intel Data Center GPU Max Series</summary>
|
||||
|
||||
```bash
|
||||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
export ENABLE_SDP_FUSION=1
|
||||
```
|
||||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
|
||||
</details>
|
||||
|
||||
#### 3.2 Configurations for Windows
|
||||
<details>
|
||||
|
||||
<summary>For Intel iGPU</summary>
|
||||
|
||||
```cmd
|
||||
set SYCL_CACHE_PERSISTENT=1
|
||||
set BIGDL_LLM_XMX_DISABLED=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For Intel Arc™ A300-Series or Pro A60</summary>
|
||||
|
||||
```cmd
|
||||
set SYCL_CACHE_PERSISTENT=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For other Intel dGPU Series</summary>
|
||||
|
||||
There is no need to set further environment variables.
|
||||
|
||||
</details>
|
||||
|
||||
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||
|
||||
### 4. Running examples
|
||||
|
||||
```bash
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Deepseek model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'deepseek-ai/deepseek-coder-6.7b-instruct'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### Sample Output
|
||||
#### [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
|
||||
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
||||
### Instruction:
|
||||
What is AI?
|
||||
### Response:
|
||||
|
||||
-------------------- Output --------------------
|
||||
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
||||
### Instruction:
|
||||
What is AI?
|
||||
### Response:
|
||||
AI, or Artificial Intelligence, refers to the simulation of human intelligence processes by machines, especially computer systems. It involves the creation of algorithms that allow computers
|
||||
```
|
||||
|
|
@ -0,0 +1,77 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://huggingface.co/Deci/DeciLM-7B-instruct#prompt-template
|
||||
PROMPT_FORMAT = """
|
||||
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
||||
### Instruction:
|
||||
{prompt}
|
||||
### Response:
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Deepseek-6.7b model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="deepseek-ai/deepseek-coder-6.7b-instruct",
|
||||
help='The huggingface repo id for the deepseek (e.g. `deepseek-ai/deepseek-coder-6.7b-instruct`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model in 4 bit
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
|
||||
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
load_in_4bit=True,
|
||||
trust_remote_code=True,
|
||||
cpu_embedding=True,
|
||||
)
|
||||
|
||||
model = model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
st = time.time()
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
torch.xpu.synchronize()
|
||||
end = time.time()
|
||||
output = output.cpu()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
||||
128
python/llm/example/GPU/PyTorch-Models/Model/deepseek/README.md
Normal file
128
python/llm/example/GPU/PyTorch-Models/Model/deepseek/README.md
Normal file
|
|
@ -0,0 +1,128 @@
|
|||
# Deepseek
|
||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Deepseek models. For illustration purposes, we utilize the [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) as a reference Deepseek model.
|
||||
|
||||
## Requirements
|
||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a Deepseek model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
|
||||
### 1. Install
|
||||
#### 1.1 Installation on Linux
|
||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||
|
||||
After installing conda, create a Python environment for BigDL-LLM:
|
||||
```bash
|
||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||
conda activate llm
|
||||
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9 libuv
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
#### 2.1 Configurations for Linux
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
#### 2.2 Configurations for Windows
|
||||
```cmd
|
||||
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
|
||||
```
|
||||
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
|
||||
### 3. Runtime Configurations
|
||||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
|
||||
#### 3.1 Configurations for Linux
|
||||
<details>
|
||||
|
||||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For Intel Data Center GPU Max Series</summary>
|
||||
|
||||
```bash
|
||||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
export ENABLE_SDP_FUSION=1
|
||||
```
|
||||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
|
||||
</details>
|
||||
|
||||
#### 3.2 Configurations for Windows
|
||||
<details>
|
||||
|
||||
<summary>For Intel iGPU</summary>
|
||||
|
||||
```cmd
|
||||
set SYCL_CACHE_PERSISTENT=1
|
||||
set BIGDL_LLM_XMX_DISABLED=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For Intel Arc™ A300-Series or Pro A60</summary>
|
||||
|
||||
```cmd
|
||||
set SYCL_CACHE_PERSISTENT=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For other Intel dGPU Series</summary>
|
||||
|
||||
There is no need to set further environment variables.
|
||||
|
||||
</details>
|
||||
|
||||
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||
### 4. Running examples
|
||||
|
||||
```bash
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
||||
In the example, several arguments can be passed to satisfy your requirements:
|
||||
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Deepseek model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'deepseek-ai/deepseek-coder-6.7b-instruct'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### Sample Output
|
||||
#### [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
||||
### Instruction:
|
||||
What is AI?
|
||||
### Response:
|
||||
|
||||
-------------------- Output --------------------
|
||||
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
||||
### Instruction:
|
||||
What is AI?
|
||||
### Response:
|
||||
AI, or Artificial Intelligence, refers to the simulation of human intelligence processes by machines, especially computer systems. It involves the creation of algorithms that allow computers
|
||||
```
|
||||
|
|
@ -0,0 +1,78 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from bigdl.llm import optimize_model
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# Refer to https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
|
||||
PROMPT_FORMAT = """
|
||||
You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
|
||||
### Instruction:
|
||||
{prompt}
|
||||
### Response:
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for deepseek model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="deepseek-ai/deepseek-coder-6.7b-instruct",
|
||||
help='The huggingface repo id for the deepseek (e.g. `deepseek-ai/deepseek-coder-6.7b-instruct`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.float16,
|
||||
).eval()
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# With only one line to enable BigDL-LLM optimization on model
|
||||
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function.
|
||||
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
|
||||
model = optimize_model(model,
|
||||
cpu_embedding=True)
|
||||
model = model.to('xpu')
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
st = time.time()
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
torch.xpu.synchronize()
|
||||
end = time.time()
|
||||
output = output.cpu()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
||||
Loading…
Reference in a new issue