LLM: add qlora finetuning example using trl.SFTTrainer (#10183)
This commit is contained in:
parent
4655005f24
commit
9975b029c5
4 changed files with 194 additions and 1 deletions
|
|
@ -2,4 +2,4 @@
|
|||
|
||||
We provide [Alpaca-QLoRA example](./alpaca-qlora/), which ports [Alpaca-LoRA](https://github.com/tloen/alpaca-lora/tree/main) to BigDL-LLM (using [QLoRA](https://arxiv.org/abs/2305.14314) algorithm) on [Intel GPU](../../README.md).
|
||||
|
||||
Meanwhile, we also provide a [simple example](./simple-example/) to help you get started with QLoRA Finetuning using BigDL-LLM.
|
||||
Meanwhile, we also provide a [simple example](./simple-example/) to help you get started with QLoRA Finetuning using BigDL-LLM, and [TRL example](./trl-example/) to help you get started with QLoRA Finetuning using BigDL-LLM and TRL library.
|
||||
|
|
|
|||
|
|
@ -0,0 +1,55 @@
|
|||
# Example of QLoRA Finetuning with BigDL-LLM
|
||||
|
||||
This simple example demonstrates how to finetune a llama2-7b model use BigDL-LLM 4bit optimizations with TRL library on [Intel GPU](../../../README.md).
|
||||
Note, this example is just used for illustrating related usage and don't guarantee convergence of training.
|
||||
|
||||
## 0. Requirements
|
||||
To run this example with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
|
||||
|
||||
## Example: Finetune llama2-7b using qlora
|
||||
|
||||
The `export_merged_model.py` is ported from [alpaca-lora](https://github.com/tloen/alpaca-lora/blob/main/export_hf_checkpoint.py).
|
||||
|
||||
### 1. Install
|
||||
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
pip install transformers==4.34.0 datasets
|
||||
pip install peft==0.5.0
|
||||
pip install accelerate==0.23.0
|
||||
pip install bitsandbytes scipy trl
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Finetune model
|
||||
|
||||
```
|
||||
python ./qlora_finetuning.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH
|
||||
```
|
||||
|
||||
#### Sample Output
|
||||
```log
|
||||
{'loss': 1.7386, 'learning_rate': 8.888888888888888e-06, 'epoch': 0.19}
|
||||
{'loss': 1.9242, 'learning_rate': 6.666666666666667e-06, 'epoch': 0.22}
|
||||
{'loss': 1.6819, 'learning_rate': 4.444444444444444e-06, 'epoch': 0.26}
|
||||
{'loss': 1.755, 'learning_rate': 2.222222222222222e-06, 'epoch': 0.29}
|
||||
{'loss': 1.7455, 'learning_rate': 0.0, 'epoch': 0.32}
|
||||
{'train_runtime': 172.8523, 'train_samples_per_second': 4.628, 'train_steps_per_second': 1.157, 'train_loss': 1.9101631927490235, 'epoch': 0.32}
|
||||
100%|████████████████████████████████████████████| 200/200 [02:52<00:00, 1.16it/s]
|
||||
TrainOutput(global_step=200, training_loss=1.9101631927490235, metrics={'train_runtime': 172.8523, 'train_samples_per_second': 4.628, 'train_steps_per_second': 1.157, 'train_loss': 1.9101631927490235, 'epoch': 0.32})
|
||||
```
|
||||
|
||||
### 4. Merge the adapter into the original model
|
||||
|
||||
```
|
||||
python ./export_merged_model.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --adapter_path ./outputs/checkpoint-200 --output_path ./outputs/checkpoint-200-merged
|
||||
```
|
||||
|
||||
Then you can use `./outputs/checkpoint-200-merged` as a normal huggingface transformer model to do inference.
|
||||
|
|
@ -0,0 +1,44 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import os
|
||||
|
||||
import torch
|
||||
from transformers import LlamaTokenizer # noqa: F402
|
||||
import argparse
|
||||
|
||||
current_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
common_util_path = os.path.join(current_dir, '..', '..')
|
||||
import sys
|
||||
sys.path.append(common_util_path)
|
||||
from common.utils import merge_adapter
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser(description='Merge the adapter into the original model for Llama2 model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf",
|
||||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--adapter_path', type=str,)
|
||||
parser.add_argument('--output_path', type=str,)
|
||||
|
||||
args = parser.parse_args()
|
||||
base_model = model_path = args.repo_id_or_model_path
|
||||
adapter_path = args.adapter_path
|
||||
output_path = args.output_path
|
||||
|
||||
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
||||
merge_adapter(base_model, tokenizer, adapter_path, output_path)
|
||||
print(f'Finish to merge the adapter into the original model and you could find the merged model in {output_path}.')
|
||||
|
|
@ -0,0 +1,94 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import os
|
||||
|
||||
import transformers
|
||||
from transformers import LlamaTokenizer
|
||||
from peft import LoraConfig
|
||||
from transformers import BitsAndBytesConfig
|
||||
from bigdl.llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer
|
||||
import argparse
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser(description='Simple example of how to qlora finetune llama2 model using bigdl-llm and TRL')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf",
|
||||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--dataset', type=str, default="Abirate/english_quotes")
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
dataset_path = args.dataset
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
data = load_dataset(dataset_path, split="train")
|
||||
|
||||
bnb_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_use_double_quant=False,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.bfloat16
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
quantization_config=bnb_config, )
|
||||
|
||||
# below is also supported
|
||||
# model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
# load_in_low_bit="nf4",
|
||||
# optimize_model=False,
|
||||
# torch_dtype=torch.bfloat16,
|
||||
# modules_to_not_convert=["lm_head"],)
|
||||
model = model.to('xpu')
|
||||
# Enable gradient_checkpointing if your memory is not enough,
|
||||
# it will slowdown the training speed
|
||||
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
|
||||
config = LoraConfig(
|
||||
r=8,
|
||||
lora_alpha=32,
|
||||
target_modules=["q_proj", "k_proj", "v_proj"],
|
||||
lora_dropout=0.05,
|
||||
bias="none",
|
||||
task_type="CAUSAL_LM",
|
||||
)
|
||||
model = get_peft_model(model, config)
|
||||
|
||||
trainer = SFTTrainer(
|
||||
model=model,
|
||||
train_dataset=data,
|
||||
args=transformers.TrainingArguments(
|
||||
per_device_train_batch_size=4,
|
||||
gradient_accumulation_steps= 1,
|
||||
warmup_steps=20,
|
||||
max_steps=200,
|
||||
learning_rate=2e-5,
|
||||
save_steps=100,
|
||||
bf16=True, # bf16 is more stable in training
|
||||
logging_steps=20,
|
||||
output_dir="outputs",
|
||||
optim="adamw_hf", # paged_adamw_8bit is not supported yet
|
||||
gradient_checkpointing=True, # can further reduce memory but slower
|
||||
),
|
||||
dataset_text_field="quote",
|
||||
)
|
||||
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
|
||||
result = trainer.train()
|
||||
print(result)
|
||||
Loading…
Reference in a new issue