* Remove pip install command in windows installation guide * fix chatglm3 installation guide * Fix gemma cpu example * Apply on other examples * fix
		
			
				
	
	
	
	
		
			3.2 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	Langchain examples
The examples in this folder shows how to use LangChain with ipex-llm on Intel GPU.
1. Install ipex-llm
Follow the instructions in GPU Install Guide to install ipex-llm
2. Install Required Dependencies for langchain examples.
pip install langchain==0.0.184
pip install -U chromadb==0.3.25
pip install -U pandas==2.0.3
3. Configures OneAPI environment variables for Linux
Note
Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
source /opt/intel/oneapi/setvars.sh
4. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
4.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
Note: Please note that
libtcmalloc.socan be installed byconda install -c conda-forge -y gperftools=2.10.
For Intel iGPU
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
4.2 Configurations for Windows
For Intel iGPU
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
For Intel Arc™ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1
Note
For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
5. Run the examples
5.1. Streaming Chat
python chat.py -m MODEL_PATH -q QUESTION
arguments info:
-m MODEL_PATH: required, path to the model-q QUESTION: question to ask. Default isWhat is AI?.
5.2. RAG (Retrival Augmented Generation)
python rag.py -m <path_to_model> [-q QUESTION] [-i INPUT_PATH]
arguments info:
-m MODEL_PATH: required, path to the model.-q QUESTION: question to ask. Default isWhat is IPEX?.-i INPUT_PATH: path to the input doc.
5.2. Low Bit
The low_bit example (low_bit.py) showcases how to use use langchain with low_bit optimized model.
By save_low_bit we save the weights of low_bit model into the target folder.
Note:
save_low_bitonly saves the weights of the model. Users could copy the tokenizer model into the target folder or specifytokenizer_idduring initialization.
python low_bit.py -m <path_to_model> -t <path_to_target> [-q <your question>]
Runtime Arguments Explained:
-m MODEL_PATH: Required, the path to the model-t TARGET_PATH: Required, the path to save the low_bit model-q QUESTION: the question