# Langchain examples
The examples in this folder shows how to use [LangChain](https://www.langchain.com/) with `ipex-llm` on Intel GPU.
### 1. Install ipex-llm
Follow the instructions in [GPU Install Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/install_gpu.html) to install ipex-llm
### 2. Install Required Dependencies for langchain examples. 
```bash
pip install langchain==0.0.184
pip install -U chromadb==0.3.25
pip install -U pandas==2.0.3
```
### 3. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 4. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 4.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
 
For Intel Data Center GPU Max Series
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 
For Intel iGPU
```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```
 
#### 4.2 Configurations for Windows
For Intel iGPU
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
 
For Intel Arc™ A-Series Graphics
```cmd
set SYCL_CACHE_PERSISTENT=1
```
 
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 5. Run the examples
#### 5.1. Streaming Chat
```bash
python chat.py -m MODEL_PATH -q QUESTION
```
arguments info:
- `-m MODEL_PATH`: **required**, path to the model
- `-q QUESTION`: question to ask. Default is `What is AI?`.
#### 5.2. RAG (Retrival Augmented Generation)
```bash
python rag.py -m  [-q QUESTION] [-i INPUT_PATH]
```
arguments info:
- `-m MODEL_PATH`: **required**, path to the model.
- `-q QUESTION`: question to ask. Default is `What is IPEX?`.
- `-i INPUT_PATH`: path to the input doc.
#### 5.2. Low Bit
The low_bit example ([low_bit.py](./low_bit.py)) showcases how to use use langchain with low_bit optimized model.
By `save_low_bit` we save the weights of low_bit model into the target folder.
> Note: `save_low_bit` only saves the weights of the model. 
> Users could copy the tokenizer model into the target folder or specify `tokenizer_id` during initialization. 
```bash
python low_bit.py -m  -t  [-q ]
```
**Runtime Arguments Explained**:
- `-m MODEL_PATH`: **Required**, the path to the model
- `-t TARGET_PATH`: **Required**, the path to save the low_bit model
- `-q QUESTION`: the question