ipex-llm/python/llm/dev/benchmark/all-in-one/README.md
2023-10-12 13:35:12 +08:00

48 lines
1.4 KiB
Markdown

# All in One Benchmark Test
All in one benchmark test allows users to test all the benchmarks and record them in a result CSV. Users can provide models and related information in `config.yaml`.
Before running, make sure to have [bigdl-llm](../../../README.md) and [bigdl-nano](../../../../nano/README.md) installed.
## Dependencies
```bash
pip install omegaconf
pip install pandas
```
## Config
Config YAML file has following format
```yaml
repo_id:
- 'THUDM/chatglm-6b'
- 'THUDM/chatglm2-6b'
- 'meta-llama/Llama-2-7b-chat-hf'
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
num_beams: 1 # default to greedy search
in_out_pairs:
- '32-32'
- '1024-128'
test_api:
- "transformer_int4"
- "native_int4"
- "optimize_model"
- "pytorch_autocast_bf16"
# - "ipex_fp16_gpu" # on Intel GPU
# - "transformer_int4_gpu" # on Intel GPU
# - "optimize_model_gpu" # on Intel GPU
```
## Run
run `python run.py`, this will output results to `results.csv`.
For SPR performance, run `bash run-spr.sh`.
> **Note**
>
> The value of `OMP_NUM_THREADS` should be the same as the cpu cores specified by `numactl -C`.
> **Note**
>
> Please install torch nightly version to avoid `Illegal instruction (core dumped)` issue, you can follow the following command to install: `pip install --pre --upgrade torch --index-url https://download.pytorch.org/whl/nightly/cpu`
For ARC performance, run `bash run-arc.sh`.