LLM: support num_beams in all-in-one benchmark (#9141)

* support num_beams

* fix
This commit is contained in:
Ruonan Wang 2023-10-12 13:35:12 +08:00 committed by GitHub
parent 62ac7ae444
commit 4f34557224
3 changed files with 52 additions and 32 deletions

View file

@ -19,6 +19,7 @@ repo_id:
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
num_beams: 1 # default to greedy search
in_out_pairs:
- '32-32'
- '1024-128'

View file

@ -5,6 +5,7 @@ repo_id:
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
num_beams: 1 # default to greedy search
in_out_pairs:
- '32-32'
- '1024-128'

View file

@ -38,22 +38,22 @@ LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
results = []
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3):
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1):
# TODO: make a parameter
if test_api == 'transformer_int4':
result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
elif test_api == 'native_int4':
run_native_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
elif test_api == 'optimize_model':
result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
elif test_api == 'transformer_int4_gpu':
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
elif test_api == 'optimize_model_gpu':
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
elif test_api == 'pytorch_autocast_bf16':
result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
elif test_api == 'ipex_fp16_gpu':
result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
for in_out_pair in in_out_pairs:
results.append([repo_id,
@ -62,7 +62,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
np.mean(result[in_out_pair], axis=0)[2],
in_out_pair,
f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
f'-{int(np.mean(result[in_out_pair], axis=0)[4])}'])
f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
num_beams])
def get_model_path(repo_id, local_model_hub):
@ -119,7 +120,8 @@ def run_transformer_int4(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials):
num_trials,
num_beams):
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, LlamaTokenizer
@ -131,10 +133,12 @@ def run_transformer_int4(repo_id,
model = AutoModel.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True, torch_dtype='auto')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True,
use_cache=True)
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True,
use_cache=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
end = time.perf_counter()
print(">> loading of model costs {}s".format(end - st))
@ -159,12 +163,13 @@ def run_transformer_int4(repo_id,
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_ids = tokenizer.encode(true_str, return_tensors="pt")
input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len]
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, use_cache=True)
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
num_beams=num_beams)
end = time.perf_counter()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
@ -179,7 +184,8 @@ def run_pytorch_autocast_bf16(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials):
num_trials,
num_beams):
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, LlamaTokenizer
model_path = get_model_path(repo_id, local_model_hub)
@ -188,11 +194,13 @@ def run_pytorch_autocast_bf16(repo_id,
# TODO: need verify chatglm family run bf16.
invalidInputError(False, "Currently pytorch do not support bfloat16 on cpu for chatglm models.")
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
use_cache=True)
# Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
use_cache=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
end = time.perf_counter()
print(">> loading of model costs {}s".format(end - st))
@ -216,13 +224,14 @@ def run_pytorch_autocast_bf16(repo_id,
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_ids = tokenizer.encode(true_str, return_tensors="pt")
input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len]
actual_in_len = input_ids.shape[1]
result[in_out] = []
print("input tokens: {}".format(input_ids.shape[1]))
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, use_cache=True)
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
num_beams=num_beams)
end = time.perf_counter()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
@ -237,7 +246,8 @@ def run_optimize_model(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials):
num_trials,
num_beams):
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
from bigdl.llm import optimize_model
@ -281,12 +291,13 @@ def run_optimize_model(repo_id,
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_ids = tokenizer.encode(true_str, return_tensors="pt")
input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len]
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
num_beams=num_beams)
end = time.perf_counter()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
@ -302,7 +313,8 @@ def run_transformer_int4_gpu(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials):
num_trials,
num_beams):
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
import intel_extension_for_pytorch as ipex
@ -351,12 +363,13 @@ def run_transformer_int4_gpu(repo_id,
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len].to('xpu')
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
num_beams=num_beams)
torch.xpu.synchronize()
end = time.perf_counter()
output_ids = output_ids.cpu()
@ -375,7 +388,8 @@ def run_optimize_model_gpu(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials):
num_trials,
num_beams):
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
from bigdl.llm import optimize_model
import intel_extension_for_pytorch as ipex
@ -427,12 +441,13 @@ def run_optimize_model_gpu(repo_id,
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len].to('xpu')
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
num_beams=num_beams)
torch.xpu.synchronize()
end = time.perf_counter()
output_ids = output_ids.cpu()
@ -451,7 +466,8 @@ def run_ipex_fp16_gpu(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials):
num_trials,
num_beams):
from transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
import intel_extension_for_pytorch as ipex
@ -496,12 +512,13 @@ def run_ipex_fp16_gpu(repo_id,
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len].to('xpu')
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
num_beams=num_beams)
torch.xpu.synchronize()
end = time.perf_counter()
output_ids = output_ids.cpu()
@ -524,7 +541,8 @@ if __name__ == '__main__':
import pandas as pd
for api in conf.test_api:
for model in conf.repo_id:
run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'])
df = pd.DataFrame(results, columns=['model', '1st token avg latency (s)', '2+ avg latency (s/token)', 'encoder time (s)', 'input/output tokens', 'actual input/output tokens'])
run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'])
df = pd.DataFrame(results, columns=['model', '1st token avg latency (s)', '2+ avg latency (s/token)', 'encoder time (s)',
'input/output tokens', 'actual input/output tokens', 'num_beams'])
df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
results = []