LLM: support num_beams in all-in-one benchmark (#9141)
* support num_beams * fix
This commit is contained in:
parent
62ac7ae444
commit
4f34557224
3 changed files with 52 additions and 32 deletions
|
|
@ -19,6 +19,7 @@ repo_id:
|
|||
local_model_hub: 'path to your local model hub'
|
||||
warm_up: 1
|
||||
num_trials: 3
|
||||
num_beams: 1 # default to greedy search
|
||||
in_out_pairs:
|
||||
- '32-32'
|
||||
- '1024-128'
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@ repo_id:
|
|||
local_model_hub: 'path to your local model hub'
|
||||
warm_up: 1
|
||||
num_trials: 3
|
||||
num_beams: 1 # default to greedy search
|
||||
in_out_pairs:
|
||||
- '32-32'
|
||||
- '1024-128'
|
||||
|
|
|
|||
|
|
@ -38,22 +38,22 @@ LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
|
|||
results = []
|
||||
|
||||
|
||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3):
|
||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1):
|
||||
# TODO: make a parameter
|
||||
if test_api == 'transformer_int4':
|
||||
result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
|
||||
elif test_api == 'native_int4':
|
||||
run_native_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
elif test_api == 'optimize_model':
|
||||
result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
|
||||
elif test_api == 'transformer_int4_gpu':
|
||||
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
|
||||
elif test_api == 'optimize_model_gpu':
|
||||
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
|
||||
elif test_api == 'pytorch_autocast_bf16':
|
||||
result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
|
||||
elif test_api == 'ipex_fp16_gpu':
|
||||
result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
|
||||
|
||||
for in_out_pair in in_out_pairs:
|
||||
results.append([repo_id,
|
||||
|
|
@ -62,7 +62,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
np.mean(result[in_out_pair], axis=0)[2],
|
||||
in_out_pair,
|
||||
f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
|
||||
f'-{int(np.mean(result[in_out_pair], axis=0)[4])}'])
|
||||
f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
|
||||
num_beams])
|
||||
|
||||
|
||||
def get_model_path(repo_id, local_model_hub):
|
||||
|
|
@ -119,7 +120,8 @@ def run_transformer_int4(repo_id,
|
|||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials):
|
||||
num_trials,
|
||||
num_beams):
|
||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, LlamaTokenizer
|
||||
|
||||
|
|
@ -131,10 +133,12 @@ def run_transformer_int4(repo_id,
|
|||
model = AutoModel.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True, torch_dtype='auto')
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
elif repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True,
|
||||
use_cache=True)
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True,
|
||||
use_cache=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
end = time.perf_counter()
|
||||
print(">> loading of model costs {}s".format(end - st))
|
||||
|
|
@ -159,12 +163,13 @@ def run_transformer_int4(repo_id,
|
|||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt")
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len]
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, use_cache=True)
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
num_beams=num_beams)
|
||||
end = time.perf_counter()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
|
|
@ -179,7 +184,8 @@ def run_pytorch_autocast_bf16(repo_id,
|
|||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials):
|
||||
num_trials,
|
||||
num_beams):
|
||||
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, LlamaTokenizer
|
||||
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
|
|
@ -188,11 +194,13 @@ def run_pytorch_autocast_bf16(repo_id,
|
|||
# TODO: need verify chatglm family run bf16.
|
||||
invalidInputError(False, "Currently pytorch do not support bfloat16 on cpu for chatglm models.")
|
||||
elif repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
|
||||
use_cache=True)
|
||||
# Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
|
||||
use_cache=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
end = time.perf_counter()
|
||||
print(">> loading of model costs {}s".format(end - st))
|
||||
|
|
@ -216,13 +224,14 @@ def run_pytorch_autocast_bf16(repo_id,
|
|||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt")
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len]
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
print("input tokens: {}".format(input_ids.shape[1]))
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, use_cache=True)
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
num_beams=num_beams)
|
||||
end = time.perf_counter()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
|
|
@ -237,7 +246,8 @@ def run_optimize_model(repo_id,
|
|||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials):
|
||||
num_trials,
|
||||
num_beams):
|
||||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
|
||||
from bigdl.llm import optimize_model
|
||||
|
||||
|
|
@ -281,12 +291,13 @@ def run_optimize_model(repo_id,
|
|||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt")
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len]
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
num_beams=num_beams)
|
||||
end = time.perf_counter()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
|
|
@ -302,7 +313,8 @@ def run_transformer_int4_gpu(repo_id,
|
|||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials):
|
||||
num_trials,
|
||||
num_beams):
|
||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
|
@ -351,12 +363,13 @@ def run_transformer_int4_gpu(repo_id,
|
|||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len].to('xpu')
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
num_beams=num_beams)
|
||||
torch.xpu.synchronize()
|
||||
end = time.perf_counter()
|
||||
output_ids = output_ids.cpu()
|
||||
|
|
@ -375,7 +388,8 @@ def run_optimize_model_gpu(repo_id,
|
|||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials):
|
||||
num_trials,
|
||||
num_beams):
|
||||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
from bigdl.llm import optimize_model
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
|
@ -427,12 +441,13 @@ def run_optimize_model_gpu(repo_id,
|
|||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len].to('xpu')
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
num_beams=num_beams)
|
||||
torch.xpu.synchronize()
|
||||
end = time.perf_counter()
|
||||
output_ids = output_ids.cpu()
|
||||
|
|
@ -451,7 +466,8 @@ def run_ipex_fp16_gpu(repo_id,
|
|||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials):
|
||||
num_trials,
|
||||
num_beams):
|
||||
from transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
|
@ -496,12 +512,13 @@ def run_ipex_fp16_gpu(repo_id,
|
|||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len].to('xpu')
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
num_beams=num_beams)
|
||||
torch.xpu.synchronize()
|
||||
end = time.perf_counter()
|
||||
output_ids = output_ids.cpu()
|
||||
|
|
@ -524,7 +541,8 @@ if __name__ == '__main__':
|
|||
import pandas as pd
|
||||
for api in conf.test_api:
|
||||
for model in conf.repo_id:
|
||||
run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'])
|
||||
df = pd.DataFrame(results, columns=['model', '1st token avg latency (s)', '2+ avg latency (s/token)', 'encoder time (s)', 'input/output tokens', 'actual input/output tokens'])
|
||||
run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'])
|
||||
df = pd.DataFrame(results, columns=['model', '1st token avg latency (s)', '2+ avg latency (s/token)', 'encoder time (s)',
|
||||
'input/output tokens', 'actual input/output tokens', 'num_beams'])
|
||||
df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
|
||||
results = []
|
||||
|
|
|
|||
Loading…
Reference in a new issue