ipex-llm/python/llm/example/CPU
Shengsheng Huang 370c52090c Langchain readme (#10348)
* update langchain readme

* update readme

* create new README

* Update README_nativeint4.md
2024-03-08 14:57:24 +08:00
..
Applications Update AutoGen README (#10255) 2024-02-28 11:34:45 +08:00
Deepspeed-AutoTP remove benchmarkwrapper form deepspeed example (#10079) 2024-02-04 15:42:15 +08:00
HF-Transformers-AutoModels Add Deepseek-6.7B (#9991) 2024-02-28 11:36:39 +08:00
LangChain Langchain readme (#10348) 2024-03-08 14:57:24 +08:00
LlamaIndex revise llamaindex readme (#10283) 2024-02-29 17:19:23 +08:00
ModelScope-Models LLM: add Modelscope model example (#10126) 2024-02-08 11:18:07 +08:00
Native-Models LLM: update example layout (#9046) 2023-10-09 15:36:39 +08:00
PyTorch-Models Revert "Add rwkv example (#9432)" (#10264) 2024-02-28 11:48:31 +08:00
QLoRA-FineTuning LLM: reorganize GPU finetuning examples (#9952) 2024-01-25 19:02:38 +08:00
Speculative-Decoding Speculative Starcoder on CPU (#10138) 2024-02-27 09:57:29 +08:00
vLLM-Serving Add vLLM bf16 support (#10278) 2024-02-29 16:33:42 +08:00
README.md LLM: add Modelscope model example (#10126) 2024-02-08 11:18:07 +08:00

BigDL-LLM Examples on Intel CPU

This folder contains examples of running BigDL-LLM on Intel CPU:

  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on BigDL-LLM (using the standard AutoModel APIs)
  • QLoRA-FineTuning: running QLoRA finetuning using BigDL-LLM on intel CPUs
  • vLLM-Serving: running vLLM serving framework on intel CPUs (with BigDL-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with BigDL-LLM low-bit optimized models)
  • LangChain: running LangChain applications on BigDL-LLM
  • Applications: running LLM applications (such as agent, streaming-llm) on BigDl-LLM
  • PyTorch-Models: running any PyTorch model on BigDL-LLM (with "one-line code change")
  • Native-Models: converting & running LLM in llama/chatglm/bloom/gptneox/starcoder model family using native (cpp) implementation
  • Speculative-Decoding: running any Hugging Face Transformers model with self-speculative decoding on Intel CPUs
  • ModelScope-Models: running ModelScope model with BigDL-LLM on Intel CPUs

System Support

Hardware:

  • Intel® Core™ processors
  • Intel® Xeon® processors

Operating System:

  • Ubuntu 20.04 or later (glibc>=2.17)
  • CentOS 7 or later (glibc>=2.17)
  • Windows 10/11, with or without WSL

Best Known Configuration on Linux

For better performance, it is recommended to set environment variables on Linux with the help of BigDL-LLM:

pip install bigdl-llm
source bigdl-llm-init