Langchain readme (#10348)
* update langchain readme * update readme * create new README * Update README_nativeint4.md
This commit is contained in:
		
							parent
							
								
									7a621a4db0
								
							
						
					
					
						commit
						370c52090c
					
				
					 2 changed files with 171 additions and 98 deletions
				
			
		| 
						 | 
				
			
			@ -1,11 +1,13 @@
 | 
			
		|||
# Langchain examples
 | 
			
		||||
## Langchain Examples
 | 
			
		||||
 | 
			
		||||
The examples here show how to use langchain with `bigdl-llm`.
 | 
			
		||||
This folder contains examples showcasing how to use `langchain` with `bigdl`. 
 | 
			
		||||
 | 
			
		||||
## Install bigdl-llm
 | 
			
		||||
Follow the instructions in [Install](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install).
 | 
			
		||||
### Install BigDL
 | 
			
		||||
 | 
			
		||||
Ensure `bigdl-llm` is installed by following the [BigDL-LLM Installation Guide](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install). 
 | 
			
		||||
 | 
			
		||||
### Install Dependences Required by the Examples
 | 
			
		||||
 | 
			
		||||
## Install Required Dependencies for langchain examples. 
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
pip install langchain==0.0.184
 | 
			
		||||
| 
						 | 
				
			
			@ -14,115 +16,58 @@ pip install -U pandas==2.0.3
 | 
			
		|||
```
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Convert Models using bigdl-llm
 | 
			
		||||
Follow the instructions in [Convert model](https://github.com/intel-analytics/BigDL/tree/main/python/llm#convert-model).
 | 
			
		||||
### Example: Chat
 | 
			
		||||
 | 
			
		||||
The chat example ([chat.py](./transformers_int4/chat.py)) shows how to use `LLMChain` to build a chat pipeline. 
 | 
			
		||||
 | 
			
		||||
## Run the examples
 | 
			
		||||
 | 
			
		||||
### 1. Streaming Chat
 | 
			
		||||
To run the example, execute the following command in the current directory:
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
python native_int4/streamchat.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -q QUESTION -t THREAD_NUM
 | 
			
		||||
python transformers_int4/chat.py -m <path_to_model> [-q <your_question>]
 | 
			
		||||
```
 | 
			
		||||
arguments info:
 | 
			
		||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
 | 
			
		||||
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
 | 
			
		||||
- `-q QUESTION`: question to ask. Default is `What is AI?`.
 | 
			
		||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
 | 
			
		||||
> Note: if `-q` is not specified, it will use `What is AI` by default. 
 | 
			
		||||
 | 
			
		||||
### 2. Question Answering over Docs
 | 
			
		||||
```bash
 | 
			
		||||
python native_int4/docqa.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -i DOC_PATH -q QUESTION -c CONTEXT_SIZE -t THREAD_NUM
 | 
			
		||||
```
 | 
			
		||||
arguments info:
 | 
			
		||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model in above step
 | 
			
		||||
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
 | 
			
		||||
- `-i DOC_PATH`: **required**, path to the input document
 | 
			
		||||
- `-q QUESTION`: question to ask. Default is `What is AI?`.
 | 
			
		||||
- `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`.
 | 
			
		||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
 | 
			
		||||
### Example: RAG (Retrival Augmented Generation) 
 | 
			
		||||
 | 
			
		||||
### 3. Voice Assistant
 | 
			
		||||
> This example is adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant with only tiny code change.
 | 
			
		||||
The RAG example ([rag.py](./transformers_int4/docqa.py)) shows how to load the input text into vector database,  and then use `load_qa_chain` to build a retrival pipeline.
 | 
			
		||||
 | 
			
		||||
Some extra dependencies are required to be installed for this example.
 | 
			
		||||
```bash
 | 
			
		||||
pip install SpeechRecognition
 | 
			
		||||
pip install pyttsx3
 | 
			
		||||
pip install PyAudio
 | 
			
		||||
pip install whisper.ai
 | 
			
		||||
pip install soundfile
 | 
			
		||||
```
 | 
			
		||||
To run the example, execute the following command in the current directory:
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
python native_int4/voiceassistant.py -x MODEL_FAMILY -m CONVERTED_MODEL_PATH -t THREAD_NUM -c CONTEXT_SIZE
 | 
			
		||||
python transformers_int4/rag.py -m <path_to_model> [-q <your_question>] [-i <path_to_input_txt>]
 | 
			
		||||
```
 | 
			
		||||
> Note: If `-i` is not specified, it will use a short introduction to Big-DL as input by default. if `-q` is not specified, `What is BigDL?` will be used by default. 
 | 
			
		||||
 | 
			
		||||
arguments info:
 | 
			
		||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
 | 
			
		||||
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
 | 
			
		||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
 | 
			
		||||
- `-c CONTEXT_SIZE`: specify maximum context size. Default to be 512.
 | 
			
		||||
 | 
			
		||||
When you see output says
 | 
			
		||||
> listening now...
 | 
			
		||||
### Example: Math
 | 
			
		||||
 | 
			
		||||
Please say something through your microphone (e.g. What is AI). The program will automatically detect when you have completed your speech and recognize them.
 | 
			
		||||
The math example ([math.py](./transformers_int4/llm_math.py)) shows how to build a chat pipeline specialized in solving math questions. For example, you can ask `What is 13 raised to the .3432 power?`
 | 
			
		||||
 | 
			
		||||
#### Known Issues
 | 
			
		||||
The speech_recognition library may occasionally skip recording due to low volume. An alternative option is to save the recording in WAV format using `PyAudio` and read the file as an input. Here is an example using PyAudio:
 | 
			
		||||
```python
 | 
			
		||||
import pyaudio
 | 
			
		||||
import speech_recognition as sr
 | 
			
		||||
 | 
			
		||||
CHUNK = 1024
 | 
			
		||||
FORMAT = pyaudio.paInt16
 | 
			
		||||
CHANNELS = 1                # The desired number of input channels
 | 
			
		||||
RATE = 16000                # The desired rate (in Hz)
 | 
			
		||||
RECORD_SECONDS = 10         # Recording time (in second)
 | 
			
		||||
WAVE_OUTPUT_FILENAME = "/path/to/pyaudio_out.wav"
 | 
			
		||||
p = pyaudio.PyAudio()
 | 
			
		||||
                
 | 
			
		||||
stream = p.open(format=FORMAT,
 | 
			
		||||
                channels=CHANNELS,
 | 
			
		||||
                rate=RATE,
 | 
			
		||||
                input=True,
 | 
			
		||||
                frames_per_buffer=CHUNK)
 | 
			
		||||
 | 
			
		||||
print("*"*10, "Listening\n")
 | 
			
		||||
frames = []
 | 
			
		||||
data =0
 | 
			
		||||
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
 | 
			
		||||
  data = stream.read(CHUNK)  ## <class 'bytes'> ,exception_on_overflow = False
 | 
			
		||||
  frames.append(data)   ## <class 'list'>
 | 
			
		||||
print("*"*10, "Stop recording\n")
 | 
			
		||||
 | 
			
		||||
stream.stop_stream()
 | 
			
		||||
stream.close()
 | 
			
		||||
p.terminate()
 | 
			
		||||
 | 
			
		||||
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
 | 
			
		||||
wf.setnchannels(CHANNELS)
 | 
			
		||||
wf.setsampwidth(p.get_sample_size(FORMAT))
 | 
			
		||||
wf.setframerate(RATE)
 | 
			
		||||
wf.writeframes(b''.join(frames))
 | 
			
		||||
wf.close()
 | 
			
		||||
 | 
			
		||||
r = sr.Recognizer()
 | 
			
		||||
with sr.AudioFile(WAVE_OUTPUT_FILENAME) as source1:
 | 
			
		||||
    audio = r.record(source1)  # read the entire audio file   
 | 
			
		||||
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 4. Math
 | 
			
		||||
 | 
			
		||||
This is an example using `LLMMathChain`. This example has been validated using [phoenix-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b).
 | 
			
		||||
To run the exmaple, execute the following command in the current directory:
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
python transformers_int4/math.py -m MODEL_PATH -q QUESTION
 | 
			
		||||
python transformers_int4/llm_math.py -m <path_to_model> [-q <your_question>]
 | 
			
		||||
```
 | 
			
		||||
arguments info:
 | 
			
		||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the transformers model
 | 
			
		||||
- `-q QUESTION`: question to ask. Default is `What is 13 raised to the .3432 power?`.
 | 
			
		||||
> Note: if `-q` is not specified, it will use `What is 13 raised to the .3432 power?` by default. 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
### Example: Voice Assistant
 | 
			
		||||
 | 
			
		||||
The voice assistant example ([voiceassistant.py](./transformers_int4/voiceassistant.py)) showcases how to use langchain to build a pipeline that takes in your speech as input in realtime, use an ASR model (e.g. [Whisper-Medium](https://huggingface.co/openai/whisper-medium)) to turn speech into text, and then feed the text into large language model to get response.  
 | 
			
		||||
 | 
			
		||||
To run the exmaple, execute the following command in the current directory:
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
python transformers_int4/voiceassistant.py -m <path_to_model> [-q <your_question>]
 | 
			
		||||
```
 | 
			
		||||
**Runtime Arguments Explained**:
 | 
			
		||||
- `-m MODEL_PATH`: **Required**, the path to the 
 | 
			
		||||
- `-r RECOGNITION_MODEL_PATH`: **Required**,  the path to the huggingface speech recognition model
 | 
			
		||||
- `-x MAX_NEW_TOKENS`: the max new tokens of model tokens input
 | 
			
		||||
- `-l LANGUAGE`: you can specify a language such as "english" or "chinese" 
 | 
			
		||||
- `-d True|False`: whether the model path specified in -m is saved low bit model.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
### Legacy (Native INT4 examples)
 | 
			
		||||
 | 
			
		||||
BigDL also provides langchain integrations using native INT4 mode. Those examples can be foud in [native_int4](./native_int4/) folder. For detailed instructions of settting up and running `native_int4` examples, refer to [Native INT4 Examples README](./README_nativeint4.md). 
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										128
									
								
								python/llm/example/CPU/LangChain/README_nativeint4.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										128
									
								
								python/llm/example/CPU/LangChain/README_nativeint4.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,128 @@
 | 
			
		|||
# Langchain Native INT4 examples
 | 
			
		||||
 | 
			
		||||
The examples in [native_int4](./native_int4) folder show how to use langchain with `bigdl-llm` native INT4 mode.
 | 
			
		||||
 | 
			
		||||
## Install bigdl-llm
 | 
			
		||||
Follow the instructions in [Install](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install).
 | 
			
		||||
 | 
			
		||||
## Install Required Dependencies for langchain examples. 
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
pip install langchain==0.0.184
 | 
			
		||||
pip install -U chromadb==0.3.25
 | 
			
		||||
pip install -U pandas==2.0.3
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Convert Models using bigdl-llm
 | 
			
		||||
Follow the instructions in [Convert model](https://github.com/intel-analytics/BigDL/tree/main/python/llm#convert-model).
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Run the examples
 | 
			
		||||
 | 
			
		||||
### 1. Streaming Chat
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
python native_int4/streamchat.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -q QUESTION -t THREAD_NUM
 | 
			
		||||
```
 | 
			
		||||
arguments info:
 | 
			
		||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
 | 
			
		||||
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
 | 
			
		||||
- `-q QUESTION`: question to ask. Default is `What is AI?`.
 | 
			
		||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
 | 
			
		||||
 | 
			
		||||
### 2. Question Answering over Docs
 | 
			
		||||
```bash
 | 
			
		||||
python native_int4/docqa.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -i DOC_PATH -q QUESTION -c CONTEXT_SIZE -t THREAD_NUM
 | 
			
		||||
```
 | 
			
		||||
arguments info:
 | 
			
		||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model in above step
 | 
			
		||||
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
 | 
			
		||||
- `-i DOC_PATH`: **required**, path to the input document
 | 
			
		||||
- `-q QUESTION`: question to ask. Default is `What is AI?`.
 | 
			
		||||
- `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`.
 | 
			
		||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
 | 
			
		||||
 | 
			
		||||
### 3. Voice Assistant
 | 
			
		||||
> This example is adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant with only tiny code change.
 | 
			
		||||
 | 
			
		||||
Some extra dependencies are required to be installed for this example.
 | 
			
		||||
```bash
 | 
			
		||||
pip install SpeechRecognition
 | 
			
		||||
pip install pyttsx3
 | 
			
		||||
pip install PyAudio
 | 
			
		||||
pip install whisper.ai
 | 
			
		||||
pip install soundfile
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
python native_int4/voiceassistant.py -x MODEL_FAMILY -m CONVERTED_MODEL_PATH -t THREAD_NUM -c CONTEXT_SIZE
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
arguments info:
 | 
			
		||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
 | 
			
		||||
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
 | 
			
		||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
 | 
			
		||||
- `-c CONTEXT_SIZE`: specify maximum context size. Default to be 512.
 | 
			
		||||
 | 
			
		||||
When you see output says
 | 
			
		||||
> listening now...
 | 
			
		||||
 | 
			
		||||
Please say something through your microphone (e.g. What is AI). The program will automatically detect when you have completed your speech and recognize them.
 | 
			
		||||
 | 
			
		||||
#### Known Issues
 | 
			
		||||
The speech_recognition library may occasionally skip recording due to low volume. An alternative option is to save the recording in WAV format using `PyAudio` and read the file as an input. Here is an example using PyAudio:
 | 
			
		||||
```python
 | 
			
		||||
import pyaudio
 | 
			
		||||
import speech_recognition as sr
 | 
			
		||||
 | 
			
		||||
CHUNK = 1024
 | 
			
		||||
FORMAT = pyaudio.paInt16
 | 
			
		||||
CHANNELS = 1                # The desired number of input channels
 | 
			
		||||
RATE = 16000                # The desired rate (in Hz)
 | 
			
		||||
RECORD_SECONDS = 10         # Recording time (in second)
 | 
			
		||||
WAVE_OUTPUT_FILENAME = "/path/to/pyaudio_out.wav"
 | 
			
		||||
p = pyaudio.PyAudio()
 | 
			
		||||
                
 | 
			
		||||
stream = p.open(format=FORMAT,
 | 
			
		||||
                channels=CHANNELS,
 | 
			
		||||
                rate=RATE,
 | 
			
		||||
                input=True,
 | 
			
		||||
                frames_per_buffer=CHUNK)
 | 
			
		||||
 | 
			
		||||
print("*"*10, "Listening\n")
 | 
			
		||||
frames = []
 | 
			
		||||
data =0
 | 
			
		||||
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
 | 
			
		||||
  data = stream.read(CHUNK)  ## <class 'bytes'> ,exception_on_overflow = False
 | 
			
		||||
  frames.append(data)   ## <class 'list'>
 | 
			
		||||
print("*"*10, "Stop recording\n")
 | 
			
		||||
 | 
			
		||||
stream.stop_stream()
 | 
			
		||||
stream.close()
 | 
			
		||||
p.terminate()
 | 
			
		||||
 | 
			
		||||
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
 | 
			
		||||
wf.setnchannels(CHANNELS)
 | 
			
		||||
wf.setsampwidth(p.get_sample_size(FORMAT))
 | 
			
		||||
wf.setframerate(RATE)
 | 
			
		||||
wf.writeframes(b''.join(frames))
 | 
			
		||||
wf.close()
 | 
			
		||||
 | 
			
		||||
r = sr.Recognizer()
 | 
			
		||||
with sr.AudioFile(WAVE_OUTPUT_FILENAME) as source1:
 | 
			
		||||
    audio = r.record(source1)  # read the entire audio file   
 | 
			
		||||
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 4. Math
 | 
			
		||||
 | 
			
		||||
This is an example using `LLMMathChain`. This example has been validated using [phoenix-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b).
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
python transformers_int4/math.py -m MODEL_PATH -q QUESTION
 | 
			
		||||
```
 | 
			
		||||
arguments info:
 | 
			
		||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the transformers model
 | 
			
		||||
- `-q QUESTION`: question to ask. Default is `What is 13 raised to the .3432 power?`.
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in a new issue