add llava gpu example (#9324)
* add llava gpu example * use 7b model * fix typo * add in README
This commit is contained in:
		
							parent
							
								
									dd3cf2f153
								
							
						
					
					
						commit
						f855a864ef
					
				
					 6 changed files with 423 additions and 7 deletions
				
			
		| 
						 | 
				
			
			@ -156,7 +156,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
			
		|||
| Phi-1_5    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-1_5)   | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-1_5)    |
 | 
			
		||||
| Flan-t5    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/flan-t5)   | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/flan-t5)    |
 | 
			
		||||
| Qwen-VL    | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl)   |    |
 | 
			
		||||
| LLaVA      | [link](python/llm/example/CPU/PyTorch-Models/Model/llava)                            |    |
 | 
			
		||||
| LLaVA      | [link](python/llm/example/CPU/PyTorch-Models/Model/llava)                 |  [link](python/llm/example/GPU/PyTorch-Models/Model/llava)                 |
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -63,7 +63,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
			
		|||
| Phi-1_5    | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-1_5)   | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-1_5)    |
 | 
			
		||||
| Flan-t5    | [link](example/CPU/HF-Transformers-AutoModels/Model/flan-t5)   | [link](example/GPU/HF-Transformers-AutoModels/Model/flan-t5)    |
 | 
			
		||||
| Qwen-VL    | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen-vl)   |   |
 | 
			
		||||
| LLaVA      | [link](example/CPU/PyTorch-Models/Model/llava)                 |    |
 | 
			
		||||
| LLaVA      | [link](example/CPU/PyTorch-Models/Model/llava)                 | [link](example/GPU/PyTorch-Models/Model/llava)                  |
 | 
			
		||||
 | 
			
		||||
### Working with `bigdl-llm`
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -6,7 +6,7 @@ In this directory, you will find examples on how you could apply BigDL-LLM INT4
 | 
			
		|||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Multi-turn chat centered around an image using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-trun chat centered around an image using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-turn chat centered around an image using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -69,9 +69,9 @@ USER: 你知道这幅画是谁画的吗?
 | 
			
		|||
ASSISTANT: 这幅画是由著名的文艺复兴画家达芬奇(Leonardo da Vinci)画的。该画是他的代表作之一,是出自意大利佛罗伦萨的博物馆。画中的女子被认为是一位不为人知的模特,而且画作可能还有一个人物底版,这可能使得这幅画的价值更高。
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
The sample inpuit image is:
 | 
			
		||||
The sample input image is:
 | 
			
		||||
 | 
			
		||||
<a href="https://llava-vl.github.io/static/images/monalisa.jpg"><img width=250px src="https://llava-vl.github.io/static/images/monalisa.jpg" ></a>
 | 
			
		||||
<a href="https://llava-vl.github.io/static/images/monalisa.jpg"><img width=400px src="https://llava-vl.github.io/static/images/monalisa.jpg" ></a>
 | 
			
		||||
 | 
			
		||||
### 3. Trouble shooting
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -58,7 +58,7 @@ from llava.mm_utils import (
 | 
			
		|||
 | 
			
		||||
from bigdl.llm import optimize_model
 | 
			
		||||
 | 
			
		||||
# Lod the pretained model.
 | 
			
		||||
# Load the pretrained model.
 | 
			
		||||
# Adapted from llava.model.builder.load_pretrained_model.
 | 
			
		||||
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False,
 | 
			
		||||
                          device_map="auto", device="cpu"):
 | 
			
		||||
| 
						 | 
				
			
			@ -295,7 +295,7 @@ if __name__ == '__main__':
 | 
			
		|||
    # With only one line to enable BigDL-LLM optimization on model
 | 
			
		||||
    model = optimize_model(model)
 | 
			
		||||
 | 
			
		||||
    # Genereate imgea tensor
 | 
			
		||||
    # Generate image tensor
 | 
			
		||||
    image_tensor = generate_image_tensor(args.image_path_or_url)
 | 
			
		||||
 | 
			
		||||
    # Get conversation template and roles
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										79
									
								
								python/llm/example/GPU/PyTorch-Models/Model/llava/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										79
									
								
								python/llm/example/GPU/PyTorch-Models/Model/llava/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,79 @@
 | 
			
		|||
# LLaVA
 | 
			
		||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on LLaVA models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) as a reference LLaVA model.
 | 
			
		||||
 | 
			
		||||
## 0. Requirements
 | 
			
		||||
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Multi-turn chat centered around an image using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-turn chat centered around an image using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
 | 
			
		||||
# you can install specific ipex/torch version for your need
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
 | 
			
		||||
git clone -b v1.1.1 --depth=1 https://github.com/haotian-liu/LLaVA.git # clone the llava libary
 | 
			
		||||
pip install einops # install dependencies required by llava
 | 
			
		||||
cp generate.py ./LLaVA/ # copy our example to the LLaVA folder
 | 
			
		||||
cd LLaVA # change the working directory to the LLaVA folder
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 3. Run
 | 
			
		||||
 | 
			
		||||
For optimal performance on Arc, it is recommended to set several environment variables.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
python ./generate.py --image-path-or-url 'https://llava-vl.github.io/static/images/monalisa.jpg'
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the LLaVA model (e.g. `liuhaotian/llava-v1.5-7b` to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'liuhaotian/llava-v1.5-7b'`.
 | 
			
		||||
- `--image-path-or-url IMAGE_PATH_OR_URL`: argument defining the input image that the chat will focus on. It is required.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `512`.
 | 
			
		||||
 | 
			
		||||
If you encounter some network error (which means your machine is unable to access huggingface.co) when running this example, refer to [Trouble Shooting](#4-trouble-shooting) section.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#### Sample Output
 | 
			
		||||
#### [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b)
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
USER: Do you know who drew this painting?
 | 
			
		||||
ASSISTANT: Yes, the painting is a portrait of a woman by Leonardo da Vinci. It's a famous artwork known as the "Mona Lisa."
 | 
			
		||||
USER: Can you describe this painting?
 | 
			
		||||
ASSISTANT: The painting features a well-detailed portrait of a woman, painted in oil on a canvas. The woman appears to be a young woman staring straight ahead in a direct gaze towards the viewer. The woman's facial features are rendered sharply in the brush strokes, giving her a lifelike, yet enigmatic expression.
 | 
			
		||||
The background of the image mainly showcases the woman's face, with some hills visible in the lower part of the painting. The artist employs a wide range of shades, evoking a sense of depth and realism in the subject matter. The technique used in this portrait sets it apart from other artworks during the Renaissance period, making it a notable piece in art history.
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
The sample input image is:
 | 
			
		||||
 | 
			
		||||
<a href="https://llava-vl.github.io/static/images/monalisa.jpg"><img width=400px src="https://llava-vl.github.io/static/images/monalisa.jpg" ></a>
 | 
			
		||||
 | 
			
		||||
### 4 Trouble shooting
 | 
			
		||||
 | 
			
		||||
#### 4.1 SSLError
 | 
			
		||||
If you encounter the following output, it means your machine has some trouble accessing huggingface.co.
 | 
			
		||||
```log
 | 
			
		||||
requests.exceptions.SSLError: (MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /openai/clip-vit-large-patch14-336/resolve/main/config.json (Caused by SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1129)')))"),
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
You can resolve this problem with the following steps:
 | 
			
		||||
1. Download https://huggingface.co/openai/clip-vit-large-patch14-336 on some machine that can access huggingface.co, and put it in huggingface's local cache (default to be `~/.cache/huggingface/hub`) on the machine that you are going to run this example.
 | 
			
		||||
2. Set the environment variable (`export TRANSFORMERS_OFFLINE=1`) before you run the example.
 | 
			
		||||
							
								
								
									
										337
									
								
								python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										337
									
								
								python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,337 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/model/builder.py
 | 
			
		||||
# and
 | 
			
		||||
# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/serve/cli.py
 | 
			
		||||
#
 | 
			
		||||
#    Copyright 2023 Haotian Liu
 | 
			
		||||
#
 | 
			
		||||
#    Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
#    you may not use this file except in compliance with the License.
 | 
			
		||||
#    You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#        http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
#    Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
#    distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
#    See the License for the specific language governing permissions and
 | 
			
		||||
#    limitations under the License.
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import torch
 | 
			
		||||
import intel_extension_for_pytorch as ipex
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
from transformers import AutoModelForCausalLM
 | 
			
		||||
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
from llava.constants import (
 | 
			
		||||
    DEFAULT_IMAGE_PATCH_TOKEN,
 | 
			
		||||
    IMAGE_TOKEN_INDEX,
 | 
			
		||||
    DEFAULT_IMAGE_TOKEN,
 | 
			
		||||
    DEFAULT_IM_START_TOKEN,
 | 
			
		||||
    DEFAULT_IM_END_TOKEN
 | 
			
		||||
)
 | 
			
		||||
from llava.conversation import conv_templates, SeparatorStyle
 | 
			
		||||
from llava.utils import disable_torch_init
 | 
			
		||||
from llava.mm_utils import (
 | 
			
		||||
    process_images,
 | 
			
		||||
    tokenizer_image_token,
 | 
			
		||||
    get_model_name_from_path,
 | 
			
		||||
    KeywordsStoppingCriteria
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
from bigdl.llm import optimize_model
 | 
			
		||||
 | 
			
		||||
# Load the pretrained model.
 | 
			
		||||
# Adapted from llava.model.builder.load_pretrained_model.
 | 
			
		||||
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False,
 | 
			
		||||
                          device_map="auto", device="cpu"):
 | 
			
		||||
    kwargs = {"device_map": device_map}
 | 
			
		||||
 | 
			
		||||
    if 'llava' in model_name.lower():
 | 
			
		||||
        # Load LLaVA model
 | 
			
		||||
        if 'lora' in model_name.lower() and model_base is None:
 | 
			
		||||
            warnings.warn('There is `lora` in model name but no `model_base` is provided.'
 | 
			
		||||
                          'If you are loading a LoRA model, please provide the `model_base` argument'
 | 
			
		||||
                          '. Detailed instruction:'
 | 
			
		||||
                          'https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
 | 
			
		||||
        if 'lora' in model_name.lower() and model_base is not None:
 | 
			
		||||
            lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
 | 
			
		||||
            tokenizer = AutoTokenizer.from_pretrained(
 | 
			
		||||
                model_base, use_fast=False)
 | 
			
		||||
            print('Loading LLaVA from base model...')
 | 
			
		||||
            model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True,
 | 
			
		||||
                                                          config=lora_cfg_pretrained, **kwargs)
 | 
			
		||||
            token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
 | 
			
		||||
            if model.lm_head.weight.shape[0] != token_num:
 | 
			
		||||
                model.lm_head.weight = torch.nn.Parameter(torch.empty(
 | 
			
		||||
                    token_num, tokem_dim, device=model.device, dtype=model.dtype))
 | 
			
		||||
                model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(
 | 
			
		||||
                    token_num, tokem_dim, device=model.device, dtype=model.dtype))
 | 
			
		||||
 | 
			
		||||
            print('Loading additional LLaVA weights...')
 | 
			
		||||
            if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
 | 
			
		||||
                non_lora_trainables = torch.load(os.path.join(model_path,
 | 
			
		||||
                                                              'non_lora_trainables.bin'),
 | 
			
		||||
                                                 map_location='cpu')
 | 
			
		||||
            else:
 | 
			
		||||
                # this is probably from HF Hub
 | 
			
		||||
                from huggingface_hub import hf_hub_download
 | 
			
		||||
 | 
			
		||||
                def load_from_hf(repo_id, filename, subfolder=None):
 | 
			
		||||
                    cache_file = hf_hub_download(
 | 
			
		||||
                        repo_id=repo_id,
 | 
			
		||||
                        filename=filename,
 | 
			
		||||
                        subfolder=subfolder)
 | 
			
		||||
                    return torch.load(cache_file, map_location='cpu')
 | 
			
		||||
                non_lora_trainables = load_from_hf(
 | 
			
		||||
                    model_path, 'non_lora_trainables.bin')
 | 
			
		||||
            non_lora_trainables = {(k[11:] if k.startswith(
 | 
			
		||||
                'base_model.') else k): v for k, v in non_lora_trainables.items()}
 | 
			
		||||
            if any(k.startswith('model.model.') for k in non_lora_trainables):
 | 
			
		||||
                non_lora_trainables = {(k[6:] if k.startswith(
 | 
			
		||||
                    'model.') else k): v for k, v in non_lora_trainables.items()}
 | 
			
		||||
            model.load_state_dict(non_lora_trainables, strict=False)
 | 
			
		||||
 | 
			
		||||
            from peft import PeftModel
 | 
			
		||||
            print('Loading LoRA weights...')
 | 
			
		||||
            model = PeftModel.from_pretrained(model, model_path)
 | 
			
		||||
            print('Merging LoRA weights...')
 | 
			
		||||
            model = model.merge_and_unload()
 | 
			
		||||
            print('Model is loaded...')
 | 
			
		||||
        elif model_base is not None:
 | 
			
		||||
            # this may be mm projector only
 | 
			
		||||
            print('Loading LLaVA from base model...')
 | 
			
		||||
            if 'mpt' in model_name.lower():
 | 
			
		||||
                if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
 | 
			
		||||
                    shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(
 | 
			
		||||
                        model_path, 'configuration_mpt.py'))
 | 
			
		||||
                tokenizer = AutoTokenizer.from_pretrained(
 | 
			
		||||
                    model_base, use_fast=True)
 | 
			
		||||
                cfg_pretrained = AutoConfig.from_pretrained(
 | 
			
		||||
                    model_path, trust_remote_code=True)
 | 
			
		||||
                model = LlavaMPTForCausalLM.from_pretrained(
 | 
			
		||||
                    model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
 | 
			
		||||
            else:
 | 
			
		||||
                tokenizer = AutoTokenizer.from_pretrained(
 | 
			
		||||
                    model_base, use_fast=False)
 | 
			
		||||
                cfg_pretrained = AutoConfig.from_pretrained(model_path)
 | 
			
		||||
                model = LlavaLlamaForCausalLM.from_pretrained(
 | 
			
		||||
                    model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
 | 
			
		||||
 | 
			
		||||
            mm_projector_weights = torch.load(os.path.join(
 | 
			
		||||
                model_path, 'mm_projector.bin'), map_location='cpu')
 | 
			
		||||
            mm_projector_weights = {k: v.to(torch.float32)
 | 
			
		||||
                                    for k, v in mm_projector_weights.items()}
 | 
			
		||||
            model.load_state_dict(mm_projector_weights, strict=False)
 | 
			
		||||
        else:
 | 
			
		||||
            if 'mpt' in model_name.lower():
 | 
			
		||||
                tokenizer = AutoTokenizer.from_pretrained(
 | 
			
		||||
                    model_path, use_fast=True)
 | 
			
		||||
                model = LlavaMPTForCausalLM.from_pretrained(
 | 
			
		||||
                    model_path, low_cpu_mem_usage=True, **kwargs)
 | 
			
		||||
            else:
 | 
			
		||||
                tokenizer = AutoTokenizer.from_pretrained(
 | 
			
		||||
                    model_path, use_fast=False)
 | 
			
		||||
                model = LlavaLlamaForCausalLM.from_pretrained(
 | 
			
		||||
                    model_path, low_cpu_mem_usage=True)
 | 
			
		||||
    else:
 | 
			
		||||
        # Load language model
 | 
			
		||||
        if model_base is not None:
 | 
			
		||||
            # PEFT model
 | 
			
		||||
            from peft import PeftModel
 | 
			
		||||
            tokenizer = AutoTokenizer.from_pretrained(
 | 
			
		||||
                model_base, use_fast=False)
 | 
			
		||||
            model = AutoModelForCausalLM.from_pretrained(
 | 
			
		||||
                model_base, torch_dtype=torch.float32, low_cpu_mem_usage=True, device_map="auto")
 | 
			
		||||
            print(f"Loading LoRA weights from {model_path}")
 | 
			
		||||
            model = PeftModel.from_pretrained(model, model_path)
 | 
			
		||||
            print(f"Merging weights")
 | 
			
		||||
            model = model.merge_and_unload()
 | 
			
		||||
            print('Convert to FP32...')
 | 
			
		||||
            model.to(torch.float32)
 | 
			
		||||
        else:
 | 
			
		||||
            use_fast = False
 | 
			
		||||
            if 'mpt' in model_name.lower():
 | 
			
		||||
                tokenizer = AutoTokenizer.from_pretrained(
 | 
			
		||||
                    model_path, use_fast=True)
 | 
			
		||||
                model = AutoModelForCausalLM.from_pretrained(
 | 
			
		||||
                    model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
 | 
			
		||||
            else:
 | 
			
		||||
                tokenizer = AutoTokenizer.from_pretrained(
 | 
			
		||||
                    model_path, use_fast=False)
 | 
			
		||||
                model = AutoModelForCausalLM.from_pretrained(
 | 
			
		||||
                    model_path, low_cpu_mem_usage=True, **kwargs)
 | 
			
		||||
 | 
			
		||||
    image_processor = None
 | 
			
		||||
 | 
			
		||||
    if 'llava' in model_name.lower():
 | 
			
		||||
        mm_use_im_start_end = getattr(
 | 
			
		||||
            model.config, "mm_use_im_start_end", False)
 | 
			
		||||
        mm_use_im_patch_token = getattr(
 | 
			
		||||
            model.config, "mm_use_im_patch_token", True)
 | 
			
		||||
        if mm_use_im_patch_token:
 | 
			
		||||
            tokenizer.add_tokens(
 | 
			
		||||
                [DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
 | 
			
		||||
        if mm_use_im_start_end:
 | 
			
		||||
            tokenizer.add_tokens(
 | 
			
		||||
                [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
 | 
			
		||||
        model.resize_token_embeddings(len(tokenizer))
 | 
			
		||||
 | 
			
		||||
        vision_tower = model.get_vision_tower()
 | 
			
		||||
        if not vision_tower.is_loaded:
 | 
			
		||||
            vision_tower.load_model()
 | 
			
		||||
        vision_tower.to(device=device, dtype=torch.float32)
 | 
			
		||||
        image_processor = vision_tower.image_processor
 | 
			
		||||
 | 
			
		||||
    if hasattr(model.config, "max_sequence_length"):
 | 
			
		||||
        context_len = model.config.max_sequence_length
 | 
			
		||||
    else:
 | 
			
		||||
        context_len = 2048
 | 
			
		||||
 | 
			
		||||
    return tokenizer, model, image_processor, context_len
 | 
			
		||||
 | 
			
		||||
# Initialize conversation from templates and get conversation roles.
 | 
			
		||||
def get_conv_and_role(model_name):
 | 
			
		||||
    if 'llama-2' in model_name.lower():
 | 
			
		||||
        conv_mode = "llava_llama_2"
 | 
			
		||||
    elif "v1" in model_name.lower():
 | 
			
		||||
        conv_mode = "llava_v1"
 | 
			
		||||
    elif "mpt" in model_name.lower():
 | 
			
		||||
        conv_mode = "mpt"
 | 
			
		||||
    else:
 | 
			
		||||
        conv_mode = "llava_v0"
 | 
			
		||||
 | 
			
		||||
    conv = conv_templates[conv_mode].copy()
 | 
			
		||||
    if "mpt" in model_name.lower():
 | 
			
		||||
        roles = ('user', 'assistant')
 | 
			
		||||
    else:
 | 
			
		||||
        roles = conv.roles
 | 
			
		||||
 | 
			
		||||
    return conv, roles
 | 
			
		||||
 | 
			
		||||
# Load image from a url or path.
 | 
			
		||||
def load_image(image_file):
 | 
			
		||||
    import requests
 | 
			
		||||
    from PIL import Image
 | 
			
		||||
    from io import BytesIO
 | 
			
		||||
 | 
			
		||||
    if image_file.startswith('http://') or image_file.startswith('https://'):
 | 
			
		||||
        response = requests.get(image_file)
 | 
			
		||||
        image = Image.open(BytesIO(response.content)).convert('RGB')
 | 
			
		||||
    else:
 | 
			
		||||
        image = Image.open(image_file).convert('RGB')
 | 
			
		||||
    return image
 | 
			
		||||
 | 
			
		||||
def generate_image_tensor(image_file):
 | 
			
		||||
    image = load_image(image_file)
 | 
			
		||||
    model_cfg = {"image_aspect_ratio": 'pad'}
 | 
			
		||||
    image_tensor = process_images([image], image_processor, model_cfg)
 | 
			
		||||
    return image_tensor
 | 
			
		||||
 | 
			
		||||
# Generate input prompt with user input.
 | 
			
		||||
def get_prompt(mm_use_im_start_end, first_round, conv, user_input):
 | 
			
		||||
    if first_round:
 | 
			
		||||
        # first message
 | 
			
		||||
        if mm_use_im_start_end:
 | 
			
		||||
            user_input = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + \
 | 
			
		||||
                DEFAULT_IM_END_TOKEN + '\n' + user_input
 | 
			
		||||
        else:
 | 
			
		||||
            user_input = DEFAULT_IMAGE_TOKEN + '\n' + user_input
 | 
			
		||||
        conv.append_message(conv.roles[0], user_input)
 | 
			
		||||
    else:
 | 
			
		||||
        # later messages
 | 
			
		||||
        conv.append_message(conv.roles[0], user_input)
 | 
			
		||||
    conv.append_message(conv.roles[1], None)
 | 
			
		||||
    return conv.get_prompt()
 | 
			
		||||
 | 
			
		||||
def get_stopping_criteria(conv, tokenizer, input_ids):
 | 
			
		||||
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
 | 
			
		||||
    keywords = [stop_str]
 | 
			
		||||
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
 | 
			
		||||
    return stopping_criteria
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(
 | 
			
		||||
        description='Predict Tokens using `generate()` API for LLaVA model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="liuhaotian/llava-v1.5-7b",
 | 
			
		||||
                        help='The huggingface repo id for the LLaVA model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--image-path-or-url', type=str,
 | 
			
		||||
                        required=True, help='Image path or url for the input image that the chat will focus on')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=512,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
    model_name = get_model_name_from_path(model_path)
 | 
			
		||||
 | 
			
		||||
    # Disable the redundant torch default initialization to accelerate model creation.
 | 
			
		||||
    disable_torch_init()
 | 
			
		||||
 | 
			
		||||
    # Load model
 | 
			
		||||
    tokenizer, model, image_processor, _ = load_pretrained_model(model_path=model_path,
 | 
			
		||||
                                                                 model_base=None,
 | 
			
		||||
                                                                 model_name=model_name)
 | 
			
		||||
 | 
			
		||||
    # With only one line to enable BigDL-LLM optimization on model
 | 
			
		||||
    model = optimize_model(model).to('xpu')
 | 
			
		||||
 | 
			
		||||
    # Generate image tensor
 | 
			
		||||
    image_tensor = generate_image_tensor(args.image_path_or_url)
 | 
			
		||||
 | 
			
		||||
    # Get conversation template and roles
 | 
			
		||||
    conv, roles = get_conv_and_role(model_name)
 | 
			
		||||
 | 
			
		||||
    first_round = True
 | 
			
		||||
    while True:
 | 
			
		||||
        try:
 | 
			
		||||
            user_input = input(f"{roles[0]}: ")
 | 
			
		||||
        except EOFError:
 | 
			
		||||
            user_input = ""
 | 
			
		||||
        if not user_input:
 | 
			
		||||
            print("exit...")
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
        prompt = get_prompt(model.config.mm_use_im_start_end, first_round, conv, user_input)
 | 
			
		||||
        first_round = False
 | 
			
		||||
        input_ids = tokenizer_image_token(
 | 
			
		||||
            prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to('xpu')
 | 
			
		||||
        stopping_criteria = get_stopping_criteria(conv, tokenizer, input_ids)
 | 
			
		||||
 | 
			
		||||
        # Generate predicted tokens
 | 
			
		||||
        with torch.inference_mode():
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output_ids = model.generate(
 | 
			
		||||
                input_ids,
 | 
			
		||||
                images=image_tensor,
 | 
			
		||||
                do_sample=True,
 | 
			
		||||
                max_new_tokens=args.n_predict,
 | 
			
		||||
                use_cache=True,
 | 
			
		||||
                stopping_criteria=[stopping_criteria])
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            #print(f'Inference time: {end-st} s')
 | 
			
		||||
 | 
			
		||||
        outputs = tokenizer.decode(
 | 
			
		||||
            output_ids[0, input_ids.shape[1]:].cpu(), skip_special_tokens=True).strip()
 | 
			
		||||
        conv.messages[-1][-1] = outputs
 | 
			
		||||
        print(f"{roles[1]}: ", end="")
 | 
			
		||||
        print(outputs)
 | 
			
		||||
		Loading…
	
		Reference in a new issue