diff --git a/README.md b/README.md
index 39ba3c7c..6ee92894 100644
--- a/README.md
+++ b/README.md
@@ -156,7 +156,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Phi-1_5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-1_5) |
| Flan-t5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/flan-t5) |
| Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | |
-| LLaVA | [link](python/llm/example/CPU/PyTorch-Models/Model/llava) | |
+| LLaVA | [link](python/llm/example/CPU/PyTorch-Models/Model/llava) | [link](python/llm/example/GPU/PyTorch-Models/Model/llava) |
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
diff --git a/python/llm/README.md b/python/llm/README.md
index 4877bf79..0d4f7111 100644
--- a/python/llm/README.md
+++ b/python/llm/README.md
@@ -63,7 +63,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Phi-1_5 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-1_5) |
| Flan-t5 | [link](example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](example/GPU/HF-Transformers-AutoModels/Model/flan-t5) |
| Qwen-VL | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | |
-| LLaVA | [link](example/CPU/PyTorch-Models/Model/llava) | |
+| LLaVA | [link](example/CPU/PyTorch-Models/Model/llava) | [link](example/GPU/PyTorch-Models/Model/llava) |
### Working with `bigdl-llm`
diff --git a/python/llm/example/CPU/PyTorch-Models/Model/llava/README.md b/python/llm/example/CPU/PyTorch-Models/Model/llava/README.md
index 9f88b14e..dc59435c 100644
--- a/python/llm/example/CPU/PyTorch-Models/Model/llava/README.md
+++ b/python/llm/example/CPU/PyTorch-Models/Model/llava/README.md
@@ -6,7 +6,7 @@ In this directory, you will find examples on how you could apply BigDL-LLM INT4
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Multi-turn chat centered around an image using `generate()` API
-In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-trun chat centered around an image using `generate()` API, with BigDL-LLM INT4 optimizations.
+In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-turn chat centered around an image using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
@@ -69,9 +69,9 @@ USER: 你知道这幅画是谁画的吗?
ASSISTANT: 这幅画是由著名的文艺复兴画家达芬奇(Leonardo da Vinci)画的。该画是他的代表作之一,是出自意大利佛罗伦萨的博物馆。画中的女子被认为是一位不为人知的模特,而且画作可能还有一个人物底版,这可能使得这幅画的价值更高。
```
-The sample inpuit image is:
+The sample input image is:
-
+
### 3. Trouble shooting
diff --git a/python/llm/example/CPU/PyTorch-Models/Model/llava/generate.py b/python/llm/example/CPU/PyTorch-Models/Model/llava/generate.py
index dab360b0..d5d0d2ce 100644
--- a/python/llm/example/CPU/PyTorch-Models/Model/llava/generate.py
+++ b/python/llm/example/CPU/PyTorch-Models/Model/llava/generate.py
@@ -58,7 +58,7 @@ from llava.mm_utils import (
from bigdl.llm import optimize_model
-# Lod the pretained model.
+# Load the pretrained model.
# Adapted from llava.model.builder.load_pretrained_model.
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False,
device_map="auto", device="cpu"):
@@ -295,7 +295,7 @@ if __name__ == '__main__':
# With only one line to enable BigDL-LLM optimization on model
model = optimize_model(model)
- # Genereate imgea tensor
+ # Generate image tensor
image_tensor = generate_image_tensor(args.image_path_or_url)
# Get conversation template and roles
diff --git a/python/llm/example/GPU/PyTorch-Models/Model/llava/README.md b/python/llm/example/GPU/PyTorch-Models/Model/llava/README.md
new file mode 100644
index 00000000..485605e1
--- /dev/null
+++ b/python/llm/example/GPU/PyTorch-Models/Model/llava/README.md
@@ -0,0 +1,79 @@
+# LLaVA
+In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on LLaVA models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) as a reference LLaVA model.
+
+## 0. Requirements
+To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
+
+## Example: Multi-turn chat centered around an image using `generate()` API
+In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-turn chat centered around an image using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
+### 1. Install
+We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
+
+After installing conda, create a Python environment for BigDL-LLM:
+```bash
+conda create -n llm python=3.9 # recommend to use Python 3.9
+conda activate llm
+
+# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
+# you can install specific ipex/torch version for your need
+pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
+
+git clone -b v1.1.1 --depth=1 https://github.com/haotian-liu/LLaVA.git # clone the llava libary
+pip install einops # install dependencies required by llava
+cp generate.py ./LLaVA/ # copy our example to the LLaVA folder
+cd LLaVA # change the working directory to the LLaVA folder
+```
+
+### 2. Configures OneAPI environment variables
+```bash
+source /opt/intel/oneapi/setvars.sh
+```
+
+### 3. Run
+
+For optimal performance on Arc, it is recommended to set several environment variables.
+
+```bash
+export USE_XETLA=OFF
+export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+```
+
+```bash
+python ./generate.py --image-path-or-url 'https://llava-vl.github.io/static/images/monalisa.jpg'
+```
+
+In the example, several arguments can be passed to satisfy your requirements:
+
+- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the LLaVA model (e.g. `liuhaotian/llava-v1.5-7b` to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'liuhaotian/llava-v1.5-7b'`.
+- `--image-path-or-url IMAGE_PATH_OR_URL`: argument defining the input image that the chat will focus on. It is required.
+- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `512`.
+
+If you encounter some network error (which means your machine is unable to access huggingface.co) when running this example, refer to [Trouble Shooting](#4-trouble-shooting) section.
+
+
+#### Sample Output
+#### [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b)
+
+```log
+USER: Do you know who drew this painting?
+ASSISTANT: Yes, the painting is a portrait of a woman by Leonardo da Vinci. It's a famous artwork known as the "Mona Lisa."
+USER: Can you describe this painting?
+ASSISTANT: The painting features a well-detailed portrait of a woman, painted in oil on a canvas. The woman appears to be a young woman staring straight ahead in a direct gaze towards the viewer. The woman's facial features are rendered sharply in the brush strokes, giving her a lifelike, yet enigmatic expression.
+The background of the image mainly showcases the woman's face, with some hills visible in the lower part of the painting. The artist employs a wide range of shades, evoking a sense of depth and realism in the subject matter. The technique used in this portrait sets it apart from other artworks during the Renaissance period, making it a notable piece in art history.
+```
+
+The sample input image is:
+
+
+
+### 4 Trouble shooting
+
+#### 4.1 SSLError
+If you encounter the following output, it means your machine has some trouble accessing huggingface.co.
+```log
+requests.exceptions.SSLError: (MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /openai/clip-vit-large-patch14-336/resolve/main/config.json (Caused by SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1129)')))"),
+```
+
+You can resolve this problem with the following steps:
+1. Download https://huggingface.co/openai/clip-vit-large-patch14-336 on some machine that can access huggingface.co, and put it in huggingface's local cache (default to be `~/.cache/huggingface/hub`) on the machine that you are going to run this example.
+2. Set the environment variable (`export TRANSFORMERS_OFFLINE=1`) before you run the example.
diff --git a/python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py
new file mode 100644
index 00000000..c43312c2
--- /dev/null
+++ b/python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py
@@ -0,0 +1,337 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+# Some parts of this file is adapted from
+# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/model/builder.py
+# and
+# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/serve/cli.py
+#
+# Copyright 2023 Haotian Liu
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+import torch
+import intel_extension_for_pytorch as ipex
+import time
+
+from transformers import AutoModelForCausalLM
+from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
+from transformers import AutoTokenizer
+
+from llava.constants import (
+ DEFAULT_IMAGE_PATCH_TOKEN,
+ IMAGE_TOKEN_INDEX,
+ DEFAULT_IMAGE_TOKEN,
+ DEFAULT_IM_START_TOKEN,
+ DEFAULT_IM_END_TOKEN
+)
+from llava.conversation import conv_templates, SeparatorStyle
+from llava.utils import disable_torch_init
+from llava.mm_utils import (
+ process_images,
+ tokenizer_image_token,
+ get_model_name_from_path,
+ KeywordsStoppingCriteria
+)
+
+from bigdl.llm import optimize_model
+
+# Load the pretrained model.
+# Adapted from llava.model.builder.load_pretrained_model.
+def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False,
+ device_map="auto", device="cpu"):
+ kwargs = {"device_map": device_map}
+
+ if 'llava' in model_name.lower():
+ # Load LLaVA model
+ if 'lora' in model_name.lower() and model_base is None:
+ warnings.warn('There is `lora` in model name but no `model_base` is provided.'
+ 'If you are loading a LoRA model, please provide the `model_base` argument'
+ '. Detailed instruction:'
+ 'https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
+ if 'lora' in model_name.lower() and model_base is not None:
+ lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
+ tokenizer = AutoTokenizer.from_pretrained(
+ model_base, use_fast=False)
+ print('Loading LLaVA from base model...')
+ model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True,
+ config=lora_cfg_pretrained, **kwargs)
+ token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
+ if model.lm_head.weight.shape[0] != token_num:
+ model.lm_head.weight = torch.nn.Parameter(torch.empty(
+ token_num, tokem_dim, device=model.device, dtype=model.dtype))
+ model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(
+ token_num, tokem_dim, device=model.device, dtype=model.dtype))
+
+ print('Loading additional LLaVA weights...')
+ if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
+ non_lora_trainables = torch.load(os.path.join(model_path,
+ 'non_lora_trainables.bin'),
+ map_location='cpu')
+ else:
+ # this is probably from HF Hub
+ from huggingface_hub import hf_hub_download
+
+ def load_from_hf(repo_id, filename, subfolder=None):
+ cache_file = hf_hub_download(
+ repo_id=repo_id,
+ filename=filename,
+ subfolder=subfolder)
+ return torch.load(cache_file, map_location='cpu')
+ non_lora_trainables = load_from_hf(
+ model_path, 'non_lora_trainables.bin')
+ non_lora_trainables = {(k[11:] if k.startswith(
+ 'base_model.') else k): v for k, v in non_lora_trainables.items()}
+ if any(k.startswith('model.model.') for k in non_lora_trainables):
+ non_lora_trainables = {(k[6:] if k.startswith(
+ 'model.') else k): v for k, v in non_lora_trainables.items()}
+ model.load_state_dict(non_lora_trainables, strict=False)
+
+ from peft import PeftModel
+ print('Loading LoRA weights...')
+ model = PeftModel.from_pretrained(model, model_path)
+ print('Merging LoRA weights...')
+ model = model.merge_and_unload()
+ print('Model is loaded...')
+ elif model_base is not None:
+ # this may be mm projector only
+ print('Loading LLaVA from base model...')
+ if 'mpt' in model_name.lower():
+ if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
+ shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(
+ model_path, 'configuration_mpt.py'))
+ tokenizer = AutoTokenizer.from_pretrained(
+ model_base, use_fast=True)
+ cfg_pretrained = AutoConfig.from_pretrained(
+ model_path, trust_remote_code=True)
+ model = LlavaMPTForCausalLM.from_pretrained(
+ model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
+ else:
+ tokenizer = AutoTokenizer.from_pretrained(
+ model_base, use_fast=False)
+ cfg_pretrained = AutoConfig.from_pretrained(model_path)
+ model = LlavaLlamaForCausalLM.from_pretrained(
+ model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
+
+ mm_projector_weights = torch.load(os.path.join(
+ model_path, 'mm_projector.bin'), map_location='cpu')
+ mm_projector_weights = {k: v.to(torch.float32)
+ for k, v in mm_projector_weights.items()}
+ model.load_state_dict(mm_projector_weights, strict=False)
+ else:
+ if 'mpt' in model_name.lower():
+ tokenizer = AutoTokenizer.from_pretrained(
+ model_path, use_fast=True)
+ model = LlavaMPTForCausalLM.from_pretrained(
+ model_path, low_cpu_mem_usage=True, **kwargs)
+ else:
+ tokenizer = AutoTokenizer.from_pretrained(
+ model_path, use_fast=False)
+ model = LlavaLlamaForCausalLM.from_pretrained(
+ model_path, low_cpu_mem_usage=True)
+ else:
+ # Load language model
+ if model_base is not None:
+ # PEFT model
+ from peft import PeftModel
+ tokenizer = AutoTokenizer.from_pretrained(
+ model_base, use_fast=False)
+ model = AutoModelForCausalLM.from_pretrained(
+ model_base, torch_dtype=torch.float32, low_cpu_mem_usage=True, device_map="auto")
+ print(f"Loading LoRA weights from {model_path}")
+ model = PeftModel.from_pretrained(model, model_path)
+ print(f"Merging weights")
+ model = model.merge_and_unload()
+ print('Convert to FP32...')
+ model.to(torch.float32)
+ else:
+ use_fast = False
+ if 'mpt' in model_name.lower():
+ tokenizer = AutoTokenizer.from_pretrained(
+ model_path, use_fast=True)
+ model = AutoModelForCausalLM.from_pretrained(
+ model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
+ else:
+ tokenizer = AutoTokenizer.from_pretrained(
+ model_path, use_fast=False)
+ model = AutoModelForCausalLM.from_pretrained(
+ model_path, low_cpu_mem_usage=True, **kwargs)
+
+ image_processor = None
+
+ if 'llava' in model_name.lower():
+ mm_use_im_start_end = getattr(
+ model.config, "mm_use_im_start_end", False)
+ mm_use_im_patch_token = getattr(
+ model.config, "mm_use_im_patch_token", True)
+ if mm_use_im_patch_token:
+ tokenizer.add_tokens(
+ [DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
+ if mm_use_im_start_end:
+ tokenizer.add_tokens(
+ [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
+ model.resize_token_embeddings(len(tokenizer))
+
+ vision_tower = model.get_vision_tower()
+ if not vision_tower.is_loaded:
+ vision_tower.load_model()
+ vision_tower.to(device=device, dtype=torch.float32)
+ image_processor = vision_tower.image_processor
+
+ if hasattr(model.config, "max_sequence_length"):
+ context_len = model.config.max_sequence_length
+ else:
+ context_len = 2048
+
+ return tokenizer, model, image_processor, context_len
+
+# Initialize conversation from templates and get conversation roles.
+def get_conv_and_role(model_name):
+ if 'llama-2' in model_name.lower():
+ conv_mode = "llava_llama_2"
+ elif "v1" in model_name.lower():
+ conv_mode = "llava_v1"
+ elif "mpt" in model_name.lower():
+ conv_mode = "mpt"
+ else:
+ conv_mode = "llava_v0"
+
+ conv = conv_templates[conv_mode].copy()
+ if "mpt" in model_name.lower():
+ roles = ('user', 'assistant')
+ else:
+ roles = conv.roles
+
+ return conv, roles
+
+# Load image from a url or path.
+def load_image(image_file):
+ import requests
+ from PIL import Image
+ from io import BytesIO
+
+ if image_file.startswith('http://') or image_file.startswith('https://'):
+ response = requests.get(image_file)
+ image = Image.open(BytesIO(response.content)).convert('RGB')
+ else:
+ image = Image.open(image_file).convert('RGB')
+ return image
+
+def generate_image_tensor(image_file):
+ image = load_image(image_file)
+ model_cfg = {"image_aspect_ratio": 'pad'}
+ image_tensor = process_images([image], image_processor, model_cfg)
+ return image_tensor
+
+# Generate input prompt with user input.
+def get_prompt(mm_use_im_start_end, first_round, conv, user_input):
+ if first_round:
+ # first message
+ if mm_use_im_start_end:
+ user_input = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + \
+ DEFAULT_IM_END_TOKEN + '\n' + user_input
+ else:
+ user_input = DEFAULT_IMAGE_TOKEN + '\n' + user_input
+ conv.append_message(conv.roles[0], user_input)
+ else:
+ # later messages
+ conv.append_message(conv.roles[0], user_input)
+ conv.append_message(conv.roles[1], None)
+ return conv.get_prompt()
+
+def get_stopping_criteria(conv, tokenizer, input_ids):
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
+ keywords = [stop_str]
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
+ return stopping_criteria
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(
+ description='Predict Tokens using `generate()` API for LLaVA model')
+ parser.add_argument('--repo-id-or-model-path', type=str, default="liuhaotian/llava-v1.5-7b",
+ help='The huggingface repo id for the LLaVA model to be downloaded'
+ ', or the path to the huggingface checkpoint folder')
+ parser.add_argument('--image-path-or-url', type=str,
+ required=True, help='Image path or url for the input image that the chat will focus on')
+ parser.add_argument('--n-predict', type=int, default=512,
+ help='Max tokens to predict')
+
+ args = parser.parse_args()
+ model_path = args.repo_id_or_model_path
+ model_name = get_model_name_from_path(model_path)
+
+ # Disable the redundant torch default initialization to accelerate model creation.
+ disable_torch_init()
+
+ # Load model
+ tokenizer, model, image_processor, _ = load_pretrained_model(model_path=model_path,
+ model_base=None,
+ model_name=model_name)
+
+ # With only one line to enable BigDL-LLM optimization on model
+ model = optimize_model(model).to('xpu')
+
+ # Generate image tensor
+ image_tensor = generate_image_tensor(args.image_path_or_url)
+
+ # Get conversation template and roles
+ conv, roles = get_conv_and_role(model_name)
+
+ first_round = True
+ while True:
+ try:
+ user_input = input(f"{roles[0]}: ")
+ except EOFError:
+ user_input = ""
+ if not user_input:
+ print("exit...")
+ break
+
+ prompt = get_prompt(model.config.mm_use_im_start_end, first_round, conv, user_input)
+ first_round = False
+ input_ids = tokenizer_image_token(
+ prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to('xpu')
+ stopping_criteria = get_stopping_criteria(conv, tokenizer, input_ids)
+
+ # Generate predicted tokens
+ with torch.inference_mode():
+ st = time.time()
+ output_ids = model.generate(
+ input_ids,
+ images=image_tensor,
+ do_sample=True,
+ max_new_tokens=args.n_predict,
+ use_cache=True,
+ stopping_criteria=[stopping_criteria])
+ end = time.time()
+ #print(f'Inference time: {end-st} s')
+
+ outputs = tokenizer.decode(
+ output_ids[0, input_ids.shape[1]:].cpu(), skip_special_tokens=True).strip()
+ conv.messages[-1][-1] = outputs
+ print(f"{roles[1]}: ", end="")
+ print(outputs)