From f855a864efd05b236bdf566eb6b9bd3887fe8dc3 Mon Sep 17 00:00:00 2001 From: dingbaorong Date: Thu, 2 Nov 2023 14:48:29 +0800 Subject: [PATCH] add llava gpu example (#9324) * add llava gpu example * use 7b model * fix typo * add in README --- README.md | 2 +- python/llm/README.md | 2 +- .../CPU/PyTorch-Models/Model/llava/README.md | 6 +- .../PyTorch-Models/Model/llava/generate.py | 4 +- .../GPU/PyTorch-Models/Model/llava/README.md | 79 ++++ .../PyTorch-Models/Model/llava/generate.py | 337 ++++++++++++++++++ 6 files changed, 423 insertions(+), 7 deletions(-) create mode 100644 python/llm/example/GPU/PyTorch-Models/Model/llava/README.md create mode 100644 python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py diff --git a/README.md b/README.md index 39ba3c7c..6ee92894 100644 --- a/README.md +++ b/README.md @@ -156,7 +156,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa | Phi-1_5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-1_5) | | Flan-t5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/flan-t5) | | Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | | -| LLaVA | [link](python/llm/example/CPU/PyTorch-Models/Model/llava) | | +| LLaVA | [link](python/llm/example/CPU/PyTorch-Models/Model/llava) | [link](python/llm/example/GPU/PyTorch-Models/Model/llava) | ***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).*** diff --git a/python/llm/README.md b/python/llm/README.md index 4877bf79..0d4f7111 100644 --- a/python/llm/README.md +++ b/python/llm/README.md @@ -63,7 +63,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa | Phi-1_5 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-1_5) | | Flan-t5 | [link](example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](example/GPU/HF-Transformers-AutoModels/Model/flan-t5) | | Qwen-VL | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | | -| LLaVA | [link](example/CPU/PyTorch-Models/Model/llava) | | +| LLaVA | [link](example/CPU/PyTorch-Models/Model/llava) | [link](example/GPU/PyTorch-Models/Model/llava) | ### Working with `bigdl-llm` diff --git a/python/llm/example/CPU/PyTorch-Models/Model/llava/README.md b/python/llm/example/CPU/PyTorch-Models/Model/llava/README.md index 9f88b14e..dc59435c 100644 --- a/python/llm/example/CPU/PyTorch-Models/Model/llava/README.md +++ b/python/llm/example/CPU/PyTorch-Models/Model/llava/README.md @@ -6,7 +6,7 @@ In this directory, you will find examples on how you could apply BigDL-LLM INT4 To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example: Multi-turn chat centered around an image using `generate()` API -In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-trun chat centered around an image using `generate()` API, with BigDL-LLM INT4 optimizations. +In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-turn chat centered around an image using `generate()` API, with BigDL-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). @@ -69,9 +69,9 @@ USER: 你知道这幅画是谁画的吗? ASSISTANT: 这幅画是由著名的文艺复兴画家达芬奇(Leonardo da Vinci)画的。该画是他的代表作之一,是出自意大利佛罗伦萨的博物馆。画中的女子被认为是一位不为人知的模特,而且画作可能还有一个人物底版,这可能使得这幅画的价值更高。 ``` -The sample inpuit image is: +The sample input image is: - + ### 3. Trouble shooting diff --git a/python/llm/example/CPU/PyTorch-Models/Model/llava/generate.py b/python/llm/example/CPU/PyTorch-Models/Model/llava/generate.py index dab360b0..d5d0d2ce 100644 --- a/python/llm/example/CPU/PyTorch-Models/Model/llava/generate.py +++ b/python/llm/example/CPU/PyTorch-Models/Model/llava/generate.py @@ -58,7 +58,7 @@ from llava.mm_utils import ( from bigdl.llm import optimize_model -# Lod the pretained model. +# Load the pretrained model. # Adapted from llava.model.builder.load_pretrained_model. def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cpu"): @@ -295,7 +295,7 @@ if __name__ == '__main__': # With only one line to enable BigDL-LLM optimization on model model = optimize_model(model) - # Genereate imgea tensor + # Generate image tensor image_tensor = generate_image_tensor(args.image_path_or_url) # Get conversation template and roles diff --git a/python/llm/example/GPU/PyTorch-Models/Model/llava/README.md b/python/llm/example/GPU/PyTorch-Models/Model/llava/README.md new file mode 100644 index 00000000..485605e1 --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/llava/README.md @@ -0,0 +1,79 @@ +# LLaVA +In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on LLaVA models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) as a reference LLaVA model. + +## 0. Requirements +To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Multi-turn chat centered around an image using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-turn chat centered around an image using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs. +### 1. Install +We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#). + +After installing conda, create a Python environment for BigDL-LLM: +```bash +conda create -n llm python=3.9 # recommend to use Python 3.9 +conda activate llm + +# below command will install intel_extension_for_pytorch==2.0.110+xpu as default +# you can install specific ipex/torch version for your need +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu + +git clone -b v1.1.1 --depth=1 https://github.com/haotian-liu/LLaVA.git # clone the llava libary +pip install einops # install dependencies required by llava +cp generate.py ./LLaVA/ # copy our example to the LLaVA folder +cd LLaVA # change the working directory to the LLaVA folder +``` + +### 2. Configures OneAPI environment variables +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Run + +For optimal performance on Arc, it is recommended to set several environment variables. + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +``` + +```bash +python ./generate.py --image-path-or-url 'https://llava-vl.github.io/static/images/monalisa.jpg' +``` + +In the example, several arguments can be passed to satisfy your requirements: + +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the LLaVA model (e.g. `liuhaotian/llava-v1.5-7b` to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'liuhaotian/llava-v1.5-7b'`. +- `--image-path-or-url IMAGE_PATH_OR_URL`: argument defining the input image that the chat will focus on. It is required. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `512`. + +If you encounter some network error (which means your machine is unable to access huggingface.co) when running this example, refer to [Trouble Shooting](#4-trouble-shooting) section. + + +#### Sample Output +#### [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) + +```log +USER: Do you know who drew this painting? +ASSISTANT: Yes, the painting is a portrait of a woman by Leonardo da Vinci. It's a famous artwork known as the "Mona Lisa." +USER: Can you describe this painting? +ASSISTANT: The painting features a well-detailed portrait of a woman, painted in oil on a canvas. The woman appears to be a young woman staring straight ahead in a direct gaze towards the viewer. The woman's facial features are rendered sharply in the brush strokes, giving her a lifelike, yet enigmatic expression. +The background of the image mainly showcases the woman's face, with some hills visible in the lower part of the painting. The artist employs a wide range of shades, evoking a sense of depth and realism in the subject matter. The technique used in this portrait sets it apart from other artworks during the Renaissance period, making it a notable piece in art history. +``` + +The sample input image is: + + + +### 4 Trouble shooting + +#### 4.1 SSLError +If you encounter the following output, it means your machine has some trouble accessing huggingface.co. +```log +requests.exceptions.SSLError: (MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /openai/clip-vit-large-patch14-336/resolve/main/config.json (Caused by SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1129)')))"), +``` + +You can resolve this problem with the following steps: +1. Download https://huggingface.co/openai/clip-vit-large-patch14-336 on some machine that can access huggingface.co, and put it in huggingface's local cache (default to be `~/.cache/huggingface/hub`) on the machine that you are going to run this example. +2. Set the environment variable (`export TRANSFORMERS_OFFLINE=1`) before you run the example. diff --git a/python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py new file mode 100644 index 00000000..c43312c2 --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py @@ -0,0 +1,337 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Some parts of this file is adapted from +# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/model/builder.py +# and +# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/serve/cli.py +# +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import torch +import intel_extension_for_pytorch as ipex +import time + +from transformers import AutoModelForCausalLM +from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM +from transformers import AutoTokenizer + +from llava.constants import ( + DEFAULT_IMAGE_PATCH_TOKEN, + IMAGE_TOKEN_INDEX, + DEFAULT_IMAGE_TOKEN, + DEFAULT_IM_START_TOKEN, + DEFAULT_IM_END_TOKEN +) +from llava.conversation import conv_templates, SeparatorStyle +from llava.utils import disable_torch_init +from llava.mm_utils import ( + process_images, + tokenizer_image_token, + get_model_name_from_path, + KeywordsStoppingCriteria +) + +from bigdl.llm import optimize_model + +# Load the pretrained model. +# Adapted from llava.model.builder.load_pretrained_model. +def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, + device_map="auto", device="cpu"): + kwargs = {"device_map": device_map} + + if 'llava' in model_name.lower(): + # Load LLaVA model + if 'lora' in model_name.lower() and model_base is None: + warnings.warn('There is `lora` in model name but no `model_base` is provided.' + 'If you are loading a LoRA model, please provide the `model_base` argument' + '. Detailed instruction:' + 'https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.') + if 'lora' in model_name.lower() and model_base is not None: + lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) + tokenizer = AutoTokenizer.from_pretrained( + model_base, use_fast=False) + print('Loading LLaVA from base model...') + model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, + config=lora_cfg_pretrained, **kwargs) + token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features + if model.lm_head.weight.shape[0] != token_num: + model.lm_head.weight = torch.nn.Parameter(torch.empty( + token_num, tokem_dim, device=model.device, dtype=model.dtype)) + model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty( + token_num, tokem_dim, device=model.device, dtype=model.dtype)) + + print('Loading additional LLaVA weights...') + if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): + non_lora_trainables = torch.load(os.path.join(model_path, + 'non_lora_trainables.bin'), + map_location='cpu') + else: + # this is probably from HF Hub + from huggingface_hub import hf_hub_download + + def load_from_hf(repo_id, filename, subfolder=None): + cache_file = hf_hub_download( + repo_id=repo_id, + filename=filename, + subfolder=subfolder) + return torch.load(cache_file, map_location='cpu') + non_lora_trainables = load_from_hf( + model_path, 'non_lora_trainables.bin') + non_lora_trainables = {(k[11:] if k.startswith( + 'base_model.') else k): v for k, v in non_lora_trainables.items()} + if any(k.startswith('model.model.') for k in non_lora_trainables): + non_lora_trainables = {(k[6:] if k.startswith( + 'model.') else k): v for k, v in non_lora_trainables.items()} + model.load_state_dict(non_lora_trainables, strict=False) + + from peft import PeftModel + print('Loading LoRA weights...') + model = PeftModel.from_pretrained(model, model_path) + print('Merging LoRA weights...') + model = model.merge_and_unload() + print('Model is loaded...') + elif model_base is not None: + # this may be mm projector only + print('Loading LLaVA from base model...') + if 'mpt' in model_name.lower(): + if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')): + shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join( + model_path, 'configuration_mpt.py')) + tokenizer = AutoTokenizer.from_pretrained( + model_base, use_fast=True) + cfg_pretrained = AutoConfig.from_pretrained( + model_path, trust_remote_code=True) + model = LlavaMPTForCausalLM.from_pretrained( + model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) + else: + tokenizer = AutoTokenizer.from_pretrained( + model_base, use_fast=False) + cfg_pretrained = AutoConfig.from_pretrained(model_path) + model = LlavaLlamaForCausalLM.from_pretrained( + model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) + + mm_projector_weights = torch.load(os.path.join( + model_path, 'mm_projector.bin'), map_location='cpu') + mm_projector_weights = {k: v.to(torch.float32) + for k, v in mm_projector_weights.items()} + model.load_state_dict(mm_projector_weights, strict=False) + else: + if 'mpt' in model_name.lower(): + tokenizer = AutoTokenizer.from_pretrained( + model_path, use_fast=True) + model = LlavaMPTForCausalLM.from_pretrained( + model_path, low_cpu_mem_usage=True, **kwargs) + else: + tokenizer = AutoTokenizer.from_pretrained( + model_path, use_fast=False) + model = LlavaLlamaForCausalLM.from_pretrained( + model_path, low_cpu_mem_usage=True) + else: + # Load language model + if model_base is not None: + # PEFT model + from peft import PeftModel + tokenizer = AutoTokenizer.from_pretrained( + model_base, use_fast=False) + model = AutoModelForCausalLM.from_pretrained( + model_base, torch_dtype=torch.float32, low_cpu_mem_usage=True, device_map="auto") + print(f"Loading LoRA weights from {model_path}") + model = PeftModel.from_pretrained(model, model_path) + print(f"Merging weights") + model = model.merge_and_unload() + print('Convert to FP32...') + model.to(torch.float32) + else: + use_fast = False + if 'mpt' in model_name.lower(): + tokenizer = AutoTokenizer.from_pretrained( + model_path, use_fast=True) + model = AutoModelForCausalLM.from_pretrained( + model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) + else: + tokenizer = AutoTokenizer.from_pretrained( + model_path, use_fast=False) + model = AutoModelForCausalLM.from_pretrained( + model_path, low_cpu_mem_usage=True, **kwargs) + + image_processor = None + + if 'llava' in model_name.lower(): + mm_use_im_start_end = getattr( + model.config, "mm_use_im_start_end", False) + mm_use_im_patch_token = getattr( + model.config, "mm_use_im_patch_token", True) + if mm_use_im_patch_token: + tokenizer.add_tokens( + [DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) + if mm_use_im_start_end: + tokenizer.add_tokens( + [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) + model.resize_token_embeddings(len(tokenizer)) + + vision_tower = model.get_vision_tower() + if not vision_tower.is_loaded: + vision_tower.load_model() + vision_tower.to(device=device, dtype=torch.float32) + image_processor = vision_tower.image_processor + + if hasattr(model.config, "max_sequence_length"): + context_len = model.config.max_sequence_length + else: + context_len = 2048 + + return tokenizer, model, image_processor, context_len + +# Initialize conversation from templates and get conversation roles. +def get_conv_and_role(model_name): + if 'llama-2' in model_name.lower(): + conv_mode = "llava_llama_2" + elif "v1" in model_name.lower(): + conv_mode = "llava_v1" + elif "mpt" in model_name.lower(): + conv_mode = "mpt" + else: + conv_mode = "llava_v0" + + conv = conv_templates[conv_mode].copy() + if "mpt" in model_name.lower(): + roles = ('user', 'assistant') + else: + roles = conv.roles + + return conv, roles + +# Load image from a url or path. +def load_image(image_file): + import requests + from PIL import Image + from io import BytesIO + + if image_file.startswith('http://') or image_file.startswith('https://'): + response = requests.get(image_file) + image = Image.open(BytesIO(response.content)).convert('RGB') + else: + image = Image.open(image_file).convert('RGB') + return image + +def generate_image_tensor(image_file): + image = load_image(image_file) + model_cfg = {"image_aspect_ratio": 'pad'} + image_tensor = process_images([image], image_processor, model_cfg) + return image_tensor + +# Generate input prompt with user input. +def get_prompt(mm_use_im_start_end, first_round, conv, user_input): + if first_round: + # first message + if mm_use_im_start_end: + user_input = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + \ + DEFAULT_IM_END_TOKEN + '\n' + user_input + else: + user_input = DEFAULT_IMAGE_TOKEN + '\n' + user_input + conv.append_message(conv.roles[0], user_input) + else: + # later messages + conv.append_message(conv.roles[0], user_input) + conv.append_message(conv.roles[1], None) + return conv.get_prompt() + +def get_stopping_criteria(conv, tokenizer, input_ids): + stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 + keywords = [stop_str] + stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) + return stopping_criteria + + +if __name__ == '__main__': + parser = argparse.ArgumentParser( + description='Predict Tokens using `generate()` API for LLaVA model') + parser.add_argument('--repo-id-or-model-path', type=str, default="liuhaotian/llava-v1.5-7b", + help='The huggingface repo id for the LLaVA model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--image-path-or-url', type=str, + required=True, help='Image path or url for the input image that the chat will focus on') + parser.add_argument('--n-predict', type=int, default=512, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + model_name = get_model_name_from_path(model_path) + + # Disable the redundant torch default initialization to accelerate model creation. + disable_torch_init() + + # Load model + tokenizer, model, image_processor, _ = load_pretrained_model(model_path=model_path, + model_base=None, + model_name=model_name) + + # With only one line to enable BigDL-LLM optimization on model + model = optimize_model(model).to('xpu') + + # Generate image tensor + image_tensor = generate_image_tensor(args.image_path_or_url) + + # Get conversation template and roles + conv, roles = get_conv_and_role(model_name) + + first_round = True + while True: + try: + user_input = input(f"{roles[0]}: ") + except EOFError: + user_input = "" + if not user_input: + print("exit...") + break + + prompt = get_prompt(model.config.mm_use_im_start_end, first_round, conv, user_input) + first_round = False + input_ids = tokenizer_image_token( + prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to('xpu') + stopping_criteria = get_stopping_criteria(conv, tokenizer, input_ids) + + # Generate predicted tokens + with torch.inference_mode(): + st = time.time() + output_ids = model.generate( + input_ids, + images=image_tensor, + do_sample=True, + max_new_tokens=args.n_predict, + use_cache=True, + stopping_criteria=[stopping_criteria]) + end = time.time() + #print(f'Inference time: {end-st} s') + + outputs = tokenizer.decode( + output_ids[0, input_ids.shape[1]:].cpu(), skip_special_tokens=True).strip() + conv.messages[-1][-1] = outputs + print(f"{roles[1]}: ", end="") + print(outputs)