Merge harness (#9319)
* add harness patch and llb script * add readme * add license * use patch instead * update readme * rename tests to evaluation * fix typo * remove nano dependency * add original harness link * rename title of usage * rename BigDLGPULM as BigDLLM * empty commit to rerun job
This commit is contained in:
parent
63b2556ce2
commit
d4dffbdb62
3 changed files with 261 additions and 0 deletions
28
python/llm/dev/benchmark/harness/README.md
Normal file
28
python/llm/dev/benchmark/harness/README.md
Normal file
|
|
@ -0,0 +1,28 @@
|
|||
# Harness Evalution
|
||||
[Harness evalution](https://github.com/EleutherAI/lm-evaluation-harness) allows users to eaisly get accuracy on various datasets. Here we have enabled harness evalution with BigDL-LLM under
|
||||
[Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) settings.
|
||||
Before running, make sure to have [bigdl-llm](../../../README.md) installed.
|
||||
|
||||
## Install Harness
|
||||
```bash
|
||||
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
|
||||
cd lm-evaluation-harness
|
||||
git checkout e81d3cc
|
||||
pip install -e .
|
||||
git apply ../bigdl-llm.patch
|
||||
cd ..
|
||||
```
|
||||
|
||||
## Run
|
||||
run `python llb.py`. `llb.py` combines some arguments in `main.py` to make evalutions easier. The mapping of arguments is defined as a dict in [`llb.py`](llb.py).
|
||||
|
||||
### Evaluation on CPU
|
||||
```python
|
||||
python llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 int4 nf4 --device cpu --tasks hellaswag arc mmlu truthfulqa --output_dir results/output
|
||||
```
|
||||
### Evaluation on Intel GPU
|
||||
```python
|
||||
python llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 int4 nf4 --device xpu --tasks hellaswag arc mmlu truthfulqa --output_dir results/output
|
||||
```
|
||||
## Results
|
||||
We follow [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to record our metrics, `acc_norm` for `hellaswag` and `arc_challenge`, `mc2` for `truthful_qa` and `acc` for `mmlu`. For `mmlu`, there are 57 subtasks which means users may need to average them manually to get final result.
|
||||
151
python/llm/dev/benchmark/harness/bigdl-llm.patch
Normal file
151
python/llm/dev/benchmark/harness/bigdl-llm.patch
Normal file
|
|
@ -0,0 +1,151 @@
|
|||
diff --git a/lm_eval/models/__init__.py b/lm_eval/models/__init__.py
|
||||
index 8ca27fac..6b581487 100644
|
||||
--- a/lm_eval/models/__init__.py
|
||||
+++ b/lm_eval/models/__init__.py
|
||||
@@ -4,6 +4,7 @@ from . import anthropic_llms
|
||||
from . import huggingface
|
||||
from . import textsynth
|
||||
from . import dummy
|
||||
+from . import bigdl_llm
|
||||
|
||||
MODEL_REGISTRY = {
|
||||
"hf": gpt2.HFLM,
|
||||
@@ -15,6 +16,7 @@ MODEL_REGISTRY = {
|
||||
"anthropic": anthropic_llms.AnthropicLM,
|
||||
"textsynth": textsynth.TextSynthLM,
|
||||
"dummy": dummy.DummyLM,
|
||||
+ "bigdl-llm": bigdl_llm.BigDLLM
|
||||
}
|
||||
|
||||
|
||||
diff --git a/lm_eval/models/bigdl_llm.py b/lm_eval/models/bigdl_llm.py
|
||||
new file mode 100644
|
||||
index 00000000..74010da3
|
||||
--- /dev/null
|
||||
+++ b/lm_eval/models/bigdl_llm.py
|
||||
@@ -0,0 +1,124 @@
|
||||
+#
|
||||
+# Copyright 2016 The BigDL Authors.
|
||||
+#
|
||||
+# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
+# you may not use this file except in compliance with the License.
|
||||
+# You may obtain a copy of the License at
|
||||
+#
|
||||
+# http://www.apache.org/licenses/LICENSE-2.0
|
||||
+#
|
||||
+# Unless required by applicable law or agreed to in writing, software
|
||||
+# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
+# See the License for the specific language governing permissions and
|
||||
+# limitations under the License.
|
||||
+#
|
||||
+
|
||||
+
|
||||
+# this code is copied from llama2 example test, and added performance test
|
||||
+import os
|
||||
+import multiprocessing
|
||||
+
|
||||
+from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
+
|
||||
+import torch
|
||||
+from typing import Optional, Union
|
||||
+from lm_eval.base import BaseLM
|
||||
+
|
||||
+from transformers import AutoTokenizer, LlamaTokenizer
|
||||
+
|
||||
+def _get_dtype(
|
||||
+ dtype: Union[str, torch.dtype]
|
||||
+) -> torch.dtype:
|
||||
+ """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
|
||||
+ if isinstance(dtype, str) and dtype != "auto":
|
||||
+ # Convert `str` args torch dtype: `float16` -> `torch.float16`
|
||||
+ _torch_dtype = getattr(torch, dtype)
|
||||
+ else:
|
||||
+ _torch_dtype = dtype
|
||||
+ return _torch_dtype
|
||||
+
|
||||
+class BigDLLM(BaseLM):
|
||||
+ def __init__(
|
||||
+ self,
|
||||
+ device="xpu",
|
||||
+ pretrained="gpt2",
|
||||
+ revision="main",
|
||||
+ low_cpu_mem_usage=None,
|
||||
+ subfolder=None,
|
||||
+ tokenizer=None,
|
||||
+ batch_size=1,
|
||||
+ load_in_8bit: Optional[bool] = False,
|
||||
+ trust_remote_code: Optional[bool] = False,
|
||||
+ load_in_low_bit=None,
|
||||
+ dtype: Optional[Union[str, torch.dtype]] = "auto",
|
||||
+ ):
|
||||
+ super().__init__()
|
||||
+
|
||||
+ assert isinstance(pretrained, str)
|
||||
+ assert isinstance(batch_size, (int,str))
|
||||
+ if device == 'xpu':
|
||||
+ import intel_extension_for_pytorch as ipex
|
||||
+ model = AutoModelForCausalLM.from_pretrained(pretrained,
|
||||
+ load_in_low_bit=load_in_low_bit,
|
||||
+ optimize_model=True,
|
||||
+ trust_remote_code=True,
|
||||
+ use_cache=True,
|
||||
+ torch_dtype=_get_dtype(dtype))
|
||||
+ print(model) # print model to check precision
|
||||
+ self._device = device
|
||||
+ self.model = model.to(device)
|
||||
+
|
||||
+ self.tokenizer = LlamaTokenizer.from_pretrained(pretrained, trust_remote_code=True)
|
||||
+
|
||||
+ # setup for automatic batch size detection
|
||||
+ if batch_size == 'auto':
|
||||
+ self.batch_size_per_gpu = batch_size
|
||||
+ else:
|
||||
+ self.batch_size_per_gpu = int(batch_size)
|
||||
+
|
||||
+ @property
|
||||
+ def eot_token_id(self):
|
||||
+ # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
|
||||
+ return self.model.token_eos()
|
||||
+
|
||||
+ @property
|
||||
+ def max_length(self):
|
||||
+ return 2048 # TODO: how to get this from config
|
||||
+
|
||||
+ @property
|
||||
+ def max_gen_toks(self):
|
||||
+ return 256
|
||||
+
|
||||
+ @property
|
||||
+ def batch_size(self):
|
||||
+ # TODO: fix multi-gpu
|
||||
+ return self.batch_size_per_gpu # * gpus
|
||||
+
|
||||
+ @property
|
||||
+ def device(self):
|
||||
+ # TODO: fix multi-gpu
|
||||
+ return torch.device(self._device)
|
||||
+
|
||||
+ def tok_encode(self, string: str):
|
||||
+ input_ids = self.tokenizer.encode(string)
|
||||
+ return input_ids
|
||||
+
|
||||
+ def tok_decode(self, tokens):
|
||||
+ return self.tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
+
|
||||
+ def _model_call(self, inps):
|
||||
+ """
|
||||
+ inps: a torch tensor of shape [batch, sequence]
|
||||
+ the size of sequence may vary from call to call
|
||||
+
|
||||
+ returns: a torch tensor of shape [batch, sequence, vocab] with the
|
||||
+ logits returned from the model
|
||||
+ """
|
||||
+ with torch.inference_mode():
|
||||
+ inps = inps.to(self.device)
|
||||
+ res = self.model(inps)[0]
|
||||
+ return res
|
||||
+
|
||||
+ def _model_generate(self, context, max_length, eos_token_id):
|
||||
+ return self.model(context, max_tokens=max_length, stop=["Q:", "\n"], echo=True)
|
||||
\ No newline at end of file
|
||||
82
python/llm/dev/benchmark/harness/llb.py
Normal file
82
python/llm/dev/benchmark/harness/llb.py
Normal file
|
|
@ -0,0 +1,82 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
# this code is copied from llama2 example test, and added performance test
|
||||
import argparse
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
task_cmd = "--num_fewshot {} --tasks {}"
|
||||
|
||||
task_map = {
|
||||
"hellaswag": task_cmd.format(10, "hellaswag"),
|
||||
"arc": task_cmd.format(25, "arc_challenge"),
|
||||
"truthfulqa": task_cmd.format(0, "truthfulqa_mc"),
|
||||
"mmlu": task_cmd.format(5, "hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions")
|
||||
}
|
||||
|
||||
prec_to_arg = {
|
||||
"bigdl-llm": {
|
||||
"int4": "load_in_low_bit=sym_int4",
|
||||
"nf4": "load_in_low_bit=nf4",
|
||||
"nf3": "load_in_low_bit=nf3",
|
||||
"fp8": "load_in_low_bit=fp8",
|
||||
"fp4": "load_in_low_bit=fp4",
|
||||
"bf16": "dtype=bfloat16",
|
||||
"fp16": "dtype=float16",
|
||||
},
|
||||
"hf-causal": {
|
||||
"nf4": "bnb_type=nf4",
|
||||
"bf16": "dtype=bfloat16",
|
||||
"fp16": "dtype=float16",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", required=True, type=str)
|
||||
parser.add_argument("--pretrained", required=True, type=str)
|
||||
parser.add_argument("--precision", required=True, nargs='+', type=str)
|
||||
parser.add_argument("--device", required=True, type=str)
|
||||
parser.add_argument("--batch", default=1, type=int)
|
||||
parser.add_argument("--tasks", required=True, nargs='+', type=str)
|
||||
parser.add_argument("--output_dir", type=str)
|
||||
args = parser.parse_args()
|
||||
print(args.model)
|
||||
print(args.tasks)
|
||||
basic_cmd = "python lm-evaluation-harness/main.py --model {} --model_args pretrained={},{} --no_cache --device {} --batch_size {} {} --output_path {} "
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
index = 1
|
||||
total = len(args.precision) * len(args.tasks)
|
||||
for prec in args.precision:
|
||||
prec_arg = prec_to_arg[args.model][prec]
|
||||
for task in args.tasks:
|
||||
output_path = f"{args.model}_{prec}_{args.device}_{task}"
|
||||
task_arg = task_map[task]
|
||||
cmd_exec = basic_cmd.format(args.model, args.pretrained, prec_arg, args.device, args.batch,
|
||||
task_arg, f"{args.output_dir}/{output_path}")
|
||||
print(f"Running job {index}/{total}:\n{cmd_exec}")
|
||||
index += 1
|
||||
with open(f"{args.output_dir}/log_{output_path}.txt", "w") as f:
|
||||
return_code = subprocess.call(cmd_exec, shell=True, stderr=f, stdout=f)
|
||||
if return_code == 0:
|
||||
print("Successful")
|
||||
else:
|
||||
print("Failed")
|
||||
|
||||
main()
|
||||
Loading…
Reference in a new issue