add latest optimization in starcoder2 (#11236)

This commit is contained in:
Yishuo Wang 2024-06-06 14:02:17 +08:00 committed by GitHub
parent ba27e750b1
commit c4e5806e01
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -42,7 +42,7 @@ import warnings
from ipex_llm.transformers.models.utils import (
use_quantize_kv_cache, restore_fp8_kv_cache,
apply_rotary_pos_emb_no_cache_xpu
should_use_fuse_rope, use_sdp, use_sdp_causal
)
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
from ipex_llm.utils.common.log4Error import invalidInputError
@ -53,16 +53,6 @@ from transformers.models.starcoder2.modeling_starcoder2 import repeat_kv, apply_
from transformers.models.starcoder2.modeling_starcoder2 import Starcoder2Model, Starcoder2Attention
def should_use_fuse_rope(self, hidden_states, position_ids):
use_fuse_rope = (
hidden_states.device.type == "xpu" and
hidden_states.numel() == hidden_states.size(-1) and
not (self.training and hidden_states.requires_grad) and
position_ids is not None
)
return use_fuse_rope
def merge_qkv(module: torch.nn.Module):
if isinstance(module, Starcoder2Attention):
new_weight = torch.cat([
@ -115,12 +105,10 @@ def attention_forward(
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# IPEX-LLM OPT: fuse rope
if should_use_fuse_rope(self, hidden_states, position_ids):
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
key_states,
position_ids,
"mistral",
self.rope_theta)
if should_use_fuse_rope(hidden_states, position_ids, self.training):
import xe_addons
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
query_states, key_states)
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
@ -129,21 +117,30 @@ def attention_forward(
# IPEX-LLM OPT: kv cache and quantize kv cache
invalidInputError(past_key_value is not None,
"`past_key_value` cannot be None")
use_quantize_kv = use_quantize_kv_cache(self.o_proj, hidden_states)
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, None)
if use_quantize_kv and q_len == 1:
# IPEX-LLM OPT: sdp
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
attn_weights = None
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, attention_mask)
else:
if use_quantize_kv:
if isinstance(past_key_value, DynamicFp8Cache):
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)