diff --git a/python/llm/src/ipex_llm/transformers/models/starcoder2.py b/python/llm/src/ipex_llm/transformers/models/starcoder2.py index b0e83f48..654d5c0a 100644 --- a/python/llm/src/ipex_llm/transformers/models/starcoder2.py +++ b/python/llm/src/ipex_llm/transformers/models/starcoder2.py @@ -42,7 +42,7 @@ import warnings from ipex_llm.transformers.models.utils import ( use_quantize_kv_cache, restore_fp8_kv_cache, - apply_rotary_pos_emb_no_cache_xpu + should_use_fuse_rope, use_sdp, use_sdp_causal ) from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache from ipex_llm.utils.common.log4Error import invalidInputError @@ -53,16 +53,6 @@ from transformers.models.starcoder2.modeling_starcoder2 import repeat_kv, apply_ from transformers.models.starcoder2.modeling_starcoder2 import Starcoder2Model, Starcoder2Attention -def should_use_fuse_rope(self, hidden_states, position_ids): - use_fuse_rope = ( - hidden_states.device.type == "xpu" and - hidden_states.numel() == hidden_states.size(-1) and - not (self.training and hidden_states.requires_grad) and - position_ids is not None - ) - return use_fuse_rope - - def merge_qkv(module: torch.nn.Module): if isinstance(module, Starcoder2Attention): new_weight = torch.cat([ @@ -115,12 +105,10 @@ def attention_forward( kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # IPEX-LLM OPT: fuse rope - if should_use_fuse_rope(self, hidden_states, position_ids): - query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, - key_states, - position_ids, - "mistral", - self.rope_theta) + if should_use_fuse_rope(hidden_states, position_ids, self.training): + import xe_addons + xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids, + query_states, key_states) else: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb( @@ -129,21 +117,30 @@ def attention_forward( # IPEX-LLM OPT: kv cache and quantize kv cache invalidInputError(past_key_value is not None, "`past_key_value` cannot be None") - use_quantize_kv = use_quantize_kv_cache(self.o_proj, hidden_states) - key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, None) - if use_quantize_kv and q_len == 1: + # IPEX-LLM OPT: sdp + if use_sdp(q_len, kv_seq_len, self.head_dim, query_states): import xe_addons - attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, + if isinstance(past_key_value, DynamicFp8Cache): + attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, + attention_mask) + else: + attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask) - attn_weights = None + elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training): + import xe_addons + if isinstance(past_key_value, DynamicFp8Cache): + attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, + value_states, attention_mask) + else: + attn_output = xe_addons.sdp_causal(query_states, key_states, + value_states, attention_mask) else: - if use_quantize_kv: + if isinstance(past_key_value, DynamicFp8Cache): key_states, value_states = restore_fp8_kv_cache(key_states, value_states, query_states.dtype) - # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups)