refactor yuan2 (#11235)
This commit is contained in:
		
							parent
							
								
									6be24fdd28
								
							
						
					
					
						commit
						ba27e750b1
					
				
					 2 changed files with 72 additions and 303 deletions
				
			
		| 
						 | 
				
			
			@ -682,39 +682,8 @@ def _optimize_pre(model):
 | 
			
		|||
                model.lm_head.weight.data = norm_weight
 | 
			
		||||
    # for yuan 2.0
 | 
			
		||||
    if model.config.model_type == "yuan":
 | 
			
		||||
        def merge_qk_proj_func(module):
 | 
			
		||||
            if "YuanAttention" in module.__class__.__name__:
 | 
			
		||||
                q_weight = module.q_proj.weight.data
 | 
			
		||||
                k_weight = module.k_proj.weight.data
 | 
			
		||||
                num_heads = module.num_heads
 | 
			
		||||
                head_dim = module.head_dim
 | 
			
		||||
                hidden_size = module.hidden_size
 | 
			
		||||
 | 
			
		||||
                weight_q = torch.cat([
 | 
			
		||||
                    q_weight.view(num_heads, head_dim, hidden_size)[0::2, :, :],
 | 
			
		||||
                    k_weight.view(num_heads, head_dim, hidden_size)[0::2, :, :],
 | 
			
		||||
                ], dim=0).view(num_heads * head_dim, hidden_size)
 | 
			
		||||
 | 
			
		||||
                weight_k = torch.cat([
 | 
			
		||||
                    q_weight.view(num_heads, head_dim, hidden_size)[1::2, :, :],
 | 
			
		||||
                    k_weight.view(num_heads, head_dim, hidden_size)[1::2, :, :],
 | 
			
		||||
                ], dim=0).view(num_heads * head_dim, hidden_size)
 | 
			
		||||
 | 
			
		||||
                merged_q_proj = torch.nn.Linear(0, 0, False)
 | 
			
		||||
                merged_q_proj.weight = torch.nn.Parameter(weight_q, requires_grad=False)
 | 
			
		||||
                merged_q_proj.in_features = hidden_size
 | 
			
		||||
                merged_q_proj.out_features = num_heads * head_dim
 | 
			
		||||
                module.merged_q_proj = merged_q_proj
 | 
			
		||||
 | 
			
		||||
                merged_k_proj = torch.nn.Linear(0, 0, False)
 | 
			
		||||
                merged_k_proj.weight = torch.nn.Parameter(weight_k, requires_grad=False)
 | 
			
		||||
                merged_k_proj.in_features = hidden_size
 | 
			
		||||
                merged_k_proj.out_features = num_heads * head_dim
 | 
			
		||||
                module.merged_k_proj = merged_k_proj
 | 
			
		||||
 | 
			
		||||
                del module.q_proj
 | 
			
		||||
                del module.k_proj
 | 
			
		||||
        model.apply(merge_qk_proj_func)
 | 
			
		||||
        from ipex_llm.transformers.models.yuan import merge_qk
 | 
			
		||||
        model.apply(merge_qk)
 | 
			
		||||
    # for bge-large
 | 
			
		||||
    if model.config.model_type == 'bert' and (
 | 
			
		||||
        not model.config.is_decoder and
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -20,32 +20,41 @@
 | 
			
		|||
# https://huggingface.co/IEITYuan/Yuan2-2B-hf/blob/7ab7b3c18eb8e5232ce2a3f720d4e6f4b53a2806/README.md#%E5%A3%B0%E6%98%8E%E4%B8%8E%E5%8D%8F%E8%AE%AEterms-and-conditions
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import copy
 | 
			
		||||
import math
 | 
			
		||||
from einops import rearrange
 | 
			
		||||
from typing import Optional, Tuple
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, \
 | 
			
		||||
    apply_rotary_pos_emb_cache_freq_xpu, mlp_fusion_check, fp16_fusion_check
 | 
			
		||||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
 | 
			
		||||
    restore_fp8_kv_cache, use_quantize_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, SILU
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
 | 
			
		||||
    mlp_fusion_check, fp16_fusion_check
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import SILU, update_past_key_value
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, use_sdp, use_sdp_causal
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def should_use_fuse_rope(self, hidden_states, position_ids):
 | 
			
		||||
    use_fuse_rope = hidden_states.device.type == "xpu"
 | 
			
		||||
    use_fuse_rope = use_fuse_rope and not (self.training and hidden_states.requires_grad)
 | 
			
		||||
    use_fuse_rope = use_fuse_rope and position_ids is not None
 | 
			
		||||
    return use_fuse_rope
 | 
			
		||||
def merge_qk(module: torch.nn.Module):
 | 
			
		||||
    if "YuanAttention" in module.__class__.__name__:
 | 
			
		||||
        q_weight = module.q_proj.weight.data
 | 
			
		||||
        k_weight = module.k_proj.weight.data
 | 
			
		||||
        num_heads = module.num_heads
 | 
			
		||||
        head_dim = module.head_dim
 | 
			
		||||
        hidden_size = module.hidden_size
 | 
			
		||||
 | 
			
		||||
        merged_qk_proj = torch.nn.Linear(0, 0, False)
 | 
			
		||||
        weight = torch.cat([
 | 
			
		||||
            q_weight.view(num_heads, head_dim, hidden_size)[0::2, :, :],
 | 
			
		||||
            k_weight.view(num_heads, head_dim, hidden_size)[0::2, :, :],
 | 
			
		||||
            q_weight.view(num_heads, head_dim, hidden_size)[1::2, :, :],
 | 
			
		||||
            k_weight.view(num_heads, head_dim, hidden_size)[1::2, :, :],
 | 
			
		||||
        ], dim=0).view(num_heads * head_dim * 2, hidden_size)
 | 
			
		||||
        merged_qk_proj.weight = torch.nn.Parameter(weight, requires_grad=False)
 | 
			
		||||
        merged_qk_proj.in_features = hidden_size
 | 
			
		||||
        merged_qk_proj.out_features = num_heads * head_dim * 2
 | 
			
		||||
        module.qk_proj = merged_qk_proj
 | 
			
		||||
 | 
			
		||||
        del module.q_proj
 | 
			
		||||
        del module.k_proj
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def yuan_localized_filtering_forward(
 | 
			
		||||
| 
						 | 
				
			
			@ -142,43 +151,14 @@ def yuan_attention_forward(
 | 
			
		|||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    if use_quantize_kv_cache(self.merged_q_proj, hidden_states):
 | 
			
		||||
        forward_function = yuan_attention_forward_quantized
 | 
			
		||||
    else:
 | 
			
		||||
        forward_function = yuan_attention_forward_origin
 | 
			
		||||
    return forward_function(
 | 
			
		||||
        self=self,
 | 
			
		||||
        hidden_states=hidden_states,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        past_key_value=past_key_value,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def yuan_attention_forward_quantized(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    before_hidden_states = None
 | 
			
		||||
    is_first_step = False
 | 
			
		||||
 | 
			
		||||
    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
			
		||||
 | 
			
		||||
    invalidInputError(use_cache, "use_cache=True is needed")
 | 
			
		||||
    invalidInputError(not self.use_shareqk, "use_shareqk is not supported for now")
 | 
			
		||||
 | 
			
		||||
    if past_key_value is None:
 | 
			
		||||
        is_first_step = True
 | 
			
		||||
        if q_len >= 2:
 | 
			
		||||
            before_hidden_states = hidden_states[:, -2:, :].transpose(0, 1).half()
 | 
			
		||||
        else:
 | 
			
		||||
| 
						 | 
				
			
			@ -193,112 +173,75 @@ def yuan_attention_forward_quantized(
 | 
			
		|||
        ], dim=0)
 | 
			
		||||
        before_hidden_states = this_hidden_states[-2:, :, ]
 | 
			
		||||
 | 
			
		||||
    value_states = \
 | 
			
		||||
        self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    value_states = self.v_proj(hidden_states)
 | 
			
		||||
    value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    if is_first_step:
 | 
			
		||||
    if past_key_value is None:
 | 
			
		||||
        hidden_states = yuan_localized_filtering_forward(self.lf_gate, hidden_states,
 | 
			
		||||
                                                         None, hidden_states.dtype)
 | 
			
		||||
    else:
 | 
			
		||||
        hidden_states = yuan_localized_filtering_forward(self.lf_gate, hidden_states,
 | 
			
		||||
                                                         this_hidden_states, hidden_states.dtype)
 | 
			
		||||
    query_states = self.merged_q_proj(hidden_states)
 | 
			
		||||
    key_states = self.merged_k_proj(hidden_states)
 | 
			
		||||
    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    qk_states = self.qk_proj(hidden_states)
 | 
			
		||||
    qk_states = qk_states.view(bsz, q_len, self.num_heads * 2, self.head_dim)
 | 
			
		||||
    qk_states = qk_states.transpose(1, 2)
 | 
			
		||||
    query_states, key_states = torch.chunk(qk_states, 2, dim=1)
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        kv_seq_len += past_key_value[0].shape[-2]
 | 
			
		||||
 | 
			
		||||
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
    if use_fuse_rope:
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states,
 | 
			
		||||
                                                                       key_states,
 | 
			
		||||
                                                                       sin, cos,
 | 
			
		||||
                                                                       "yuan",
 | 
			
		||||
                                                                       position_ids)
 | 
			
		||||
    if should_use_fuse_rope(hidden_states, position_ids, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
 | 
			
		||||
                                       query_states, key_states)
 | 
			
		||||
    else:
 | 
			
		||||
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb(query_states,
 | 
			
		||||
                                                        key_states,
 | 
			
		||||
                                                        cos, sin,
 | 
			
		||||
                                                        position_ids,
 | 
			
		||||
                                                        "yuan")
 | 
			
		||||
 | 
			
		||||
    if past_key_value is None:
 | 
			
		||||
        # should use origin attn here
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
 | 
			
		||||
                          "Attention weights should be of size "
 | 
			
		||||
                          f"{(bsz, self.num_heads, q_len, kv_seq_len)}, "
 | 
			
		||||
                          f"but is {attn_weights.size()}")
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
 | 
			
		||||
                              f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
 | 
			
		||||
                              f"but is {attention_mask.size()}")
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
            attn_weights = torch.max(attn_weights,
 | 
			
		||||
                                     torch.tensor(torch.finfo(attn_weights.dtype).min))
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                             dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            k_cache, v_cache = init_fp8_kv_cache(
 | 
			
		||||
                bsz, self.num_heads, kv_seq_len, self.head_dim, device=device
 | 
			
		||||
            )
 | 
			
		||||
            key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
 | 
			
		||||
                                                           key_states, value_states)
 | 
			
		||||
            past_key_value = (key_states, value_states, before_hidden_states)
 | 
			
		||||
    # IPEX-LLM OPT: kv cache and quantzie kv cache
 | 
			
		||||
    use_quantize_kv = use_quantize_kv_cache(self.qk_proj, hidden_states)
 | 
			
		||||
    key_states, value_states = update_past_key_value(
 | 
			
		||||
        None if past_key_value is None else (past_key_value[0], past_key_value[1]),
 | 
			
		||||
        key_states, value_states,
 | 
			
		||||
        kv_seq_len, use_quantize_kv, device
 | 
			
		||||
    )
 | 
			
		||||
    past_key_value = (key_states, value_states, before_hidden_states) if use_cache else None
 | 
			
		||||
 | 
			
		||||
    # IPEX-LLM OPT: sdp
 | 
			
		||||
    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
			
		||||
                                            attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
			
		||||
                                        attention_mask)
 | 
			
		||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
 | 
			
		||||
                                                   value_states, attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp_causal(query_states, key_states,
 | 
			
		||||
                                               value_states, attention_mask)
 | 
			
		||||
    else:
 | 
			
		||||
        k_cache, v_cache, _ = past_key_value
 | 
			
		||||
        key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
 | 
			
		||||
                                                       key_states, value_states)
 | 
			
		||||
        past_key_value = (key_states, value_states, before_hidden_states)
 | 
			
		||||
 | 
			
		||||
        # torch.matmul
 | 
			
		||||
        if query_states.size(2) != 1 or device.type != 'xpu':
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
            attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
			
		||||
        else:
 | 
			
		||||
            import xe_addons
 | 
			
		||||
            attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
 | 
			
		||||
 | 
			
		||||
        attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
 | 
			
		||||
                          "Attention weights should be of size "
 | 
			
		||||
                          f"{(bsz, self.num_heads, q_len, kv_seq_len)}, "
 | 
			
		||||
                          f"but is {attn_weights.size()}")
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
 | 
			
		||||
                              f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
 | 
			
		||||
                              f"but is {attention_mask.size()}")
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
            attn_weights = torch.max(attn_weights,
 | 
			
		||||
                                     torch.tensor(torch.finfo(attn_weights.dtype).min))
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                             dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        if query_states.size(2) != 1 or device.type != 'xpu':
 | 
			
		||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
        else:
 | 
			
		||||
            import xe_addons
 | 
			
		||||
            attn_output = xe_addons.attn_value_fp8_matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
        invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
			
		||||
                          "`attn_output` should be of size "
 | 
			
		||||
                          f"{(bsz, self.num_heads, q_len, self.head_dim)}, "
 | 
			
		||||
                          f"but is {attn_output.size()}")
 | 
			
		||||
        attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                   dtype=torch.float32).to(value_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2)
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
| 
						 | 
				
			
			@ -307,146 +250,3 @@ def yuan_attention_forward_quantized(
 | 
			
		|||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def yuan_attention_forward_origin(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    before_hidden_states = None
 | 
			
		||||
    is_first_step = False
 | 
			
		||||
    self.use_shareqk = False
 | 
			
		||||
 | 
			
		||||
    enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value)
 | 
			
		||||
 | 
			
		||||
    invalidInputError(use_cache, "use_cache=True is needed")
 | 
			
		||||
    invalidInputError(not self.use_shareqk, "use_shareqk is not supported for now")
 | 
			
		||||
 | 
			
		||||
    if past_key_value is None:
 | 
			
		||||
        is_first_step = True
 | 
			
		||||
        if q_len >= 2:
 | 
			
		||||
            before_hidden_states = hidden_states[:, -2:, :].transpose(0, 1).half()
 | 
			
		||||
        else:
 | 
			
		||||
            before_hidden_states = torch.zeros(2, bsz, self.hidden_size,
 | 
			
		||||
                                               dtype=torch.half, device=hidden_states.device)
 | 
			
		||||
            before_hidden_states[-1:, :, :] = hidden_states[:, -1:, :].transpose(0, 1)
 | 
			
		||||
    else:
 | 
			
		||||
        before_hidden_states = past_key_value[2]
 | 
			
		||||
        this_hidden_states = torch.cat([
 | 
			
		||||
            before_hidden_states,
 | 
			
		||||
            hidden_states.transpose(0, 1).half(),
 | 
			
		||||
        ], dim=0)
 | 
			
		||||
        before_hidden_states = this_hidden_states[-2:, :, ]
 | 
			
		||||
 | 
			
		||||
    value_states = \
 | 
			
		||||
        self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    if is_first_step:
 | 
			
		||||
        hidden_states = yuan_localized_filtering_forward(self.lf_gate, hidden_states,
 | 
			
		||||
                                                         None, hidden_states.dtype)
 | 
			
		||||
    else:
 | 
			
		||||
        hidden_states = yuan_localized_filtering_forward(self.lf_gate, hidden_states,
 | 
			
		||||
                                                         this_hidden_states, hidden_states.dtype)
 | 
			
		||||
    query_states = self.merged_q_proj(hidden_states)
 | 
			
		||||
    key_states = self.merged_k_proj(hidden_states)
 | 
			
		||||
    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        kv_seq_len += past_key_value[0].shape[-2]
 | 
			
		||||
 | 
			
		||||
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
    if use_fuse_rope:
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states,
 | 
			
		||||
                                                                       key_states,
 | 
			
		||||
                                                                       sin, cos,
 | 
			
		||||
                                                                       "yuan",
 | 
			
		||||
                                                                       position_ids)
 | 
			
		||||
    else:
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb(query_states,
 | 
			
		||||
                                                        key_states,
 | 
			
		||||
                                                        cos, sin,
 | 
			
		||||
                                                        position_ids,
 | 
			
		||||
                                                        "yuan")
 | 
			
		||||
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        # reuse k, v, self_attention
 | 
			
		||||
        cache_k = past_key_value[0]
 | 
			
		||||
        cache_v = past_key_value[1]
 | 
			
		||||
        if not enough_kv_room:
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                       self.num_heads,
 | 
			
		||||
                                                       self.head_dim,
 | 
			
		||||
                                                       cache_k.size(2),
 | 
			
		||||
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                       dtype=cache_k.dtype,
 | 
			
		||||
                                                       device=device)
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
 | 
			
		||||
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = init_kv_cache(bsz,
 | 
			
		||||
                                                         self.num_heads,
 | 
			
		||||
                                                         self.head_dim,
 | 
			
		||||
                                                         kv_seq_len,
 | 
			
		||||
                                                         max_cache_length,
 | 
			
		||||
                                                         dtype=key_states.dtype,
 | 
			
		||||
                                                         device=device)
 | 
			
		||||
        new_key_states[:] = key_states
 | 
			
		||||
        new_value_states[:] = value_states
 | 
			
		||||
        key_states = new_key_states
 | 
			
		||||
        value_states = new_value_states
 | 
			
		||||
 | 
			
		||||
    past_key_value = \
 | 
			
		||||
        (key_states, value_states, before_hidden_states) if use_cache else None
 | 
			
		||||
 | 
			
		||||
    attn_weights = \
 | 
			
		||||
        torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
    invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
 | 
			
		||||
                      "Attention weights should be of size "
 | 
			
		||||
                      f"{(bsz, self.num_heads, q_len, kv_seq_len)}, "
 | 
			
		||||
                      f"but is {attn_weights.size()}")
 | 
			
		||||
 | 
			
		||||
    if attention_mask is not None:
 | 
			
		||||
        invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
 | 
			
		||||
                          f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
 | 
			
		||||
                          f"but is {attention_mask.size()}")
 | 
			
		||||
        attn_weights = attn_weights + attention_mask
 | 
			
		||||
        attn_weights = torch.max(attn_weights,
 | 
			
		||||
                                 torch.tensor(torch.finfo(attn_weights.dtype).min))
 | 
			
		||||
 | 
			
		||||
    # upcast attention to fp32
 | 
			
		||||
    attn_weights = \
 | 
			
		||||
        torch.nn.functional.softmax(attn_weights,
 | 
			
		||||
                                    dim=-1,
 | 
			
		||||
                                    dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
    attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
			
		||||
                      "`attn_output` should be of size "
 | 
			
		||||
                      f"{(bsz, self.num_heads, q_len, self.head_dim)}, "
 | 
			
		||||
                      f"but is {attn_output.size()}")
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2)
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue