* Add Axolotl 0.4.0, remove legacy 0.3.0 support. * replace is_torch_bf16_gpu_available * Add HF_HUB_OFFLINE=1 * Move transformers out of requirement * Refine readme and qlora.yml
83 lines
2.6 KiB
Python
83 lines
2.6 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# This file is copied from
|
|
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/src/axolotl/cli/train.py
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from ipex_llm import llm_patch
|
|
llm_patch(train=True)
|
|
# The following is the original axolotl train code (without IPEX-LLM)
|
|
|
|
"""
|
|
CLI to run training on a model
|
|
"""
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Tuple
|
|
|
|
import fire
|
|
import transformers
|
|
from transformers import PreTrainedModel, PreTrainedTokenizer
|
|
|
|
from axolotl.cli import (
|
|
check_accelerate_default_config,
|
|
check_user_token,
|
|
load_cfg,
|
|
load_datasets,
|
|
load_rl_datasets,
|
|
print_axolotl_text_art,
|
|
)
|
|
from axolotl.common.cli import TrainerCliArgs
|
|
from axolotl.train import train
|
|
|
|
LOG = logging.getLogger("axolotl.cli.train")
|
|
|
|
|
|
def do_cli(config: Path = Path("examples/"), **kwargs):
|
|
# pylint: disable=duplicate-code
|
|
parsed_cfg = load_cfg(config, **kwargs)
|
|
parser = transformers.HfArgumentParser((TrainerCliArgs))
|
|
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
|
|
return_remaining_strings=True
|
|
)
|
|
return do_train(parsed_cfg, parsed_cli_args)
|
|
|
|
|
|
def do_train(cfg, cli_args) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
|
|
print_axolotl_text_art()
|
|
check_accelerate_default_config()
|
|
check_user_token()
|
|
if cfg.rl:
|
|
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
|
|
else:
|
|
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
|
|
|
return train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(do_cli)
|