Axolotl v0.4.0 support (#10773)
* Add Axolotl 0.4.0, remove legacy 0.3.0 support. * replace is_torch_bf16_gpu_available * Add HF_HUB_OFFLINE=1 * Move transformers out of requirement * Refine readme and qlora.yml
This commit is contained in:
parent
26cae0a39c
commit
f2e923b3ca
7 changed files with 165 additions and 280 deletions
|
|
@ -1,6 +1,6 @@
|
|||
# Finetune LLM on Intel GPU using axolotl v0.3.0 without writing code
|
||||
# Finetune LLM on Intel GPU using axolotl v0.4.0 without writing code
|
||||
|
||||
This example demonstrates how to easily run LLM finetuning application using [axolotl v0.3.0](https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.3.0) and IPEX-LLM 4bit optimizations with [Intel GPUs](../../../README.md). By applying IPEX-LLM patch, you could use axolotl on Intel GPUs using IPEX-LLM optimization without writing code.
|
||||
This example demonstrates how to easily run LLM finetuning application using [axolotl v0.4.0](https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0) and IPEX-LLM 4bit optimizations with [Intel GPUs](../../../README.md). By applying IPEX-LLM patch, you could use axolotl on Intel GPUs using IPEX-LLM optimization without writing code.
|
||||
|
||||
Note, this example is just used for illustrating related usage and don't guarantee convergence of training.
|
||||
|
||||
|
|
@ -15,23 +15,24 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
# install axolotl v0.3.0
|
||||
# install axolotl v0.4.0
|
||||
git clone https://github.com/OpenAccess-AI-Collective/axolotl
|
||||
cd axolotl
|
||||
git checkout v0.3.0
|
||||
git checkout v0.4.0
|
||||
cp ../requirements-xpu.txt requirements.txt
|
||||
pip install -e .
|
||||
pip install transformers==4.36.0
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables and accelerate
|
||||
|
||||
Configures OneAPI environment variables
|
||||
#### 2.1 Configures OneAPI environment variables
|
||||
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
Configures `accelerate` in command line interactively.
|
||||
#### 2.2 Configures `accelerate` in command line interactively.
|
||||
|
||||
```bash
|
||||
accelerate config
|
||||
|
|
@ -41,16 +42,30 @@ Please answer `NO` in option `Do you want to run your training on CPU only (even
|
|||
|
||||
After finish accelerate config, check if `use_cpu` is disable (i.e., ` use_cpu: false`) in accelerate config file (`~/.cache/huggingface/accelerate/default_config.yaml`).
|
||||
|
||||
#### 2.3 (Optional) Set ` HF_HUB_OFFLINE=1` to avoid huggingface hug signing.
|
||||
|
||||
```bash
|
||||
export HF_HUB_OFFLINE=1
|
||||
```
|
||||
|
||||
For more details, please refer [hfhuboffline](https://huggingface.co/docs/huggingface_hub/en/package_reference/environment_variables#hfhuboffline).
|
||||
|
||||
### 3. Finetune Llama-2-7B
|
||||
|
||||
This example shows how to run [Alpaca QLoRA finetune on Llama-2](https://github.com/artidoro/qlora) directly on Intel GPU, based on [axolotl Llama-2 qlora example](https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.3.0/examples/llama-2/qlora.yml). Note that only Llama-2-7B QLora example is verified on Intel ARC 770 with 16GB memory.
|
||||
This example shows how to run [Alpaca QLoRA finetune on Llama-2](https://github.com/artidoro/qlora) directly on Intel GPU, based on [axolotl Llama-2 qlora example](https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/examples/llama-2/qlora.yml). Note that only Llama-2-7B QLora example is verified on Intel ARC 770 with 16GB memory.
|
||||
|
||||
Modify parameters in `qlora.yml` based on your requirements.
|
||||
Modify parameters in `qlora.yml` based on your requirements. Then, launch finetuning with the following command.
|
||||
|
||||
```
|
||||
accelerate launch finetune.py qlora.yml
|
||||
```
|
||||
|
||||
In v0.4.0, you can also use `train.py` instead of `-m axolotl.cli.train` or `finetune.py`.
|
||||
|
||||
```
|
||||
accelerate launch train.py qlora.yml
|
||||
```
|
||||
|
||||
Output in console
|
||||
|
||||
```
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@
|
|||
# limitations under the License.
|
||||
#
|
||||
# This file is copied from
|
||||
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.3.0/scripts/finetune.py
|
||||
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/scripts/finetune.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
|
@ -33,264 +33,40 @@ llm_patch(train=True)
|
|||
# The following is the original axolotl finetune code (without IPEX-LLM)
|
||||
|
||||
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
|
||||
|
||||
import importlib
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import fire
|
||||
import torch
|
||||
import transformers
|
||||
import yaml
|
||||
|
||||
# add src to the pythonpath so we don't need to pip install this
|
||||
from art import text2art
|
||||
from transformers import GenerationConfig, TextStreamer
|
||||
from axolotl.cli import (
|
||||
check_accelerate_default_config,
|
||||
check_user_token,
|
||||
do_inference,
|
||||
do_merge_lora,
|
||||
load_cfg,
|
||||
load_datasets,
|
||||
print_axolotl_text_art,
|
||||
)
|
||||
from axolotl.cli.shard import shard
|
||||
from axolotl.common.cli import TrainerCliArgs
|
||||
from axolotl.train import train
|
||||
|
||||
from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer
|
||||
from axolotl.logging_config import configure_logging
|
||||
from axolotl.train import TrainDatasetMeta, train
|
||||
from axolotl.utils.config import normalize_config, validate_config
|
||||
from axolotl.utils.data import prepare_dataset
|
||||
from axolotl.utils.dict import DictDefault
|
||||
from axolotl.utils.distributed import is_main_process
|
||||
from axolotl.utils.models import load_tokenizer
|
||||
from axolotl.utils.tokenization import check_dataset_labels
|
||||
from axolotl.utils.wandb import setup_wandb_env_vars
|
||||
|
||||
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
||||
src_dir = os.path.join(project_root, "src")
|
||||
sys.path.insert(0, src_dir)
|
||||
|
||||
configure_logging()
|
||||
LOG = logging.getLogger("axolotl.scripts")
|
||||
|
||||
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
||||
|
||||
|
||||
def print_axolotl_text_art(suffix=None):
|
||||
font = "nancyj"
|
||||
ascii_text = " axolotl"
|
||||
if suffix:
|
||||
ascii_text += f" x {suffix}"
|
||||
ascii_art = text2art(" axolotl", font=font)
|
||||
|
||||
if is_main_process():
|
||||
print(ascii_art)
|
||||
|
||||
|
||||
def get_multi_line_input() -> Optional[str]:
|
||||
print("Give me an instruction (Ctrl + D to finish): ")
|
||||
instruction = ""
|
||||
for line in sys.stdin:
|
||||
instruction += line # pylint: disable=consider-using-join
|
||||
# instruction = pathlib.Path("/proc/self/fd/0").read_text()
|
||||
return instruction
|
||||
|
||||
|
||||
def do_merge_lora(
|
||||
*,
|
||||
cfg: DictDefault,
|
||||
cli_args: TrainerCliArgs,
|
||||
):
|
||||
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
|
||||
safe_serialization = cfg.save_safetensors is True
|
||||
|
||||
LOG.info("running merge of LoRA with base model")
|
||||
model = model.merge_and_unload()
|
||||
model.to(dtype=torch.float16)
|
||||
|
||||
if cfg.local_rank == 0:
|
||||
LOG.info("saving merged model")
|
||||
model.save_pretrained(
|
||||
str(Path(cfg.output_dir) / "merged"),
|
||||
safe_serialization=safe_serialization,
|
||||
)
|
||||
tokenizer.save_pretrained(str(Path(cfg.output_dir) / "merged"))
|
||||
|
||||
|
||||
def shard(
|
||||
*,
|
||||
cfg: DictDefault,
|
||||
cli_args: TrainerCliArgs,
|
||||
):
|
||||
model, _ = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
|
||||
safe_serialization = cfg.save_safetensors is True
|
||||
LOG.debug("Re-saving model w/ sharding")
|
||||
model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization)
|
||||
|
||||
|
||||
def do_inference(
|
||||
*,
|
||||
cfg: DictDefault,
|
||||
cli_args: TrainerCliArgs,
|
||||
):
|
||||
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
|
||||
prompter = cli_args.prompter
|
||||
default_tokens = {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
|
||||
|
||||
for token, symbol in default_tokens.items():
|
||||
# If the token isn't already specified in the config, add it
|
||||
if not (cfg.special_tokens and token in cfg.special_tokens):
|
||||
tokenizer.add_special_tokens({token: symbol})
|
||||
|
||||
prompter_module = None
|
||||
if prompter:
|
||||
prompter_module = getattr(
|
||||
importlib.import_module("axolotl.prompters"), prompter
|
||||
)
|
||||
|
||||
if cfg.landmark_attention:
|
||||
from axolotl.monkeypatch.llama_landmark_attn import set_model_mem_id
|
||||
|
||||
set_model_mem_id(model, tokenizer)
|
||||
model.set_mem_cache_args(
|
||||
max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None
|
||||
)
|
||||
|
||||
model = model.to(cfg.device)
|
||||
|
||||
while True:
|
||||
print("=" * 80)
|
||||
# support for multiline inputs
|
||||
instruction = get_multi_line_input()
|
||||
if not instruction:
|
||||
return
|
||||
if prompter_module:
|
||||
prompt: str = next(
|
||||
prompter_module().build_prompt(instruction=instruction.strip("\n"))
|
||||
)
|
||||
else:
|
||||
prompt = instruction.strip()
|
||||
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
|
||||
|
||||
print("=" * 40)
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
generation_config = GenerationConfig(
|
||||
repetition_penalty=1.1,
|
||||
max_new_tokens=1024,
|
||||
temperature=0.9,
|
||||
top_p=0.95,
|
||||
top_k=40,
|
||||
bos_token_id=tokenizer.bos_token_id,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
do_sample=True,
|
||||
use_cache=True,
|
||||
return_dict_in_generate=True,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
output_scores=False,
|
||||
)
|
||||
streamer = TextStreamer(tokenizer)
|
||||
generated = model.generate(
|
||||
inputs=batch["input_ids"].to(cfg.device),
|
||||
generation_config=generation_config,
|
||||
streamer=streamer,
|
||||
)
|
||||
print("=" * 40)
|
||||
print(tokenizer.decode(generated["sequences"].cpu().tolist()[0]))
|
||||
|
||||
|
||||
def choose_config(path: Path):
|
||||
yaml_files = list(path.glob("*.yml"))
|
||||
|
||||
if not yaml_files:
|
||||
raise ValueError(
|
||||
"No YAML config files found in the specified directory. Are you using a .yml extension?"
|
||||
)
|
||||
|
||||
if len(yaml_files) == 1:
|
||||
print(f"Using default YAML file '{yaml_files[0]}'")
|
||||
return yaml_files[0]
|
||||
|
||||
print("Choose a YAML file:")
|
||||
for idx, file in enumerate(yaml_files):
|
||||
print(f"{idx + 1}. {file}")
|
||||
|
||||
chosen_file = None
|
||||
while chosen_file is None:
|
||||
try:
|
||||
choice = int(input("Enter the number of your choice: "))
|
||||
if 1 <= choice <= len(yaml_files):
|
||||
chosen_file = yaml_files[choice - 1]
|
||||
else:
|
||||
print("Invalid choice. Please choose a number from the list.")
|
||||
except ValueError:
|
||||
print("Invalid input. Please enter a number.")
|
||||
|
||||
return chosen_file
|
||||
|
||||
|
||||
def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool:
|
||||
return not any(el in list2 for el in list1)
|
||||
|
||||
|
||||
def load_cfg(config: Path = Path("examples/"), **kwargs):
|
||||
if Path(config).is_dir():
|
||||
config = choose_config(config)
|
||||
|
||||
# load the config from the yaml file
|
||||
with open(config, encoding="utf-8") as file:
|
||||
cfg: DictDefault = DictDefault(yaml.safe_load(file))
|
||||
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
||||
# then overwrite the value
|
||||
cfg_keys = cfg.keys()
|
||||
for k, _ in kwargs.items():
|
||||
# if not strict, allow writing to cfg even if it's not in the yml already
|
||||
if k in cfg_keys or not cfg.strict:
|
||||
# handle booleans
|
||||
if isinstance(cfg[k], bool):
|
||||
cfg[k] = bool(kwargs[k])
|
||||
else:
|
||||
cfg[k] = kwargs[k]
|
||||
|
||||
validate_config(cfg)
|
||||
|
||||
normalize_config(cfg)
|
||||
|
||||
setup_wandb_env_vars(cfg)
|
||||
return cfg
|
||||
|
||||
|
||||
def load_datasets(
|
||||
*,
|
||||
cfg: DictDefault,
|
||||
cli_args: TrainerCliArgs,
|
||||
) -> TrainDatasetMeta:
|
||||
tokenizer = load_tokenizer(cfg)
|
||||
|
||||
train_dataset, eval_dataset, total_num_steps = prepare_dataset(cfg, tokenizer)
|
||||
|
||||
if cli_args.debug or cfg.debug:
|
||||
LOG.info("check_dataset_labels...")
|
||||
check_dataset_labels(
|
||||
train_dataset.select(
|
||||
[
|
||||
random.randrange(0, len(train_dataset) - 1) # nosec
|
||||
for _ in range(cli_args.debug_num_examples)
|
||||
]
|
||||
),
|
||||
tokenizer,
|
||||
num_examples=cli_args.debug_num_examples,
|
||||
text_only=cli_args.debug_text_only,
|
||||
)
|
||||
|
||||
return TrainDatasetMeta(
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
total_num_steps=total_num_steps,
|
||||
)
|
||||
LOG = logging.getLogger("axolotl.scripts.finetune")
|
||||
|
||||
|
||||
def do_cli(config: Path = Path("examples/"), **kwargs):
|
||||
print_axolotl_text_art()
|
||||
LOG.warning(
|
||||
str(
|
||||
PendingDeprecationWarning(
|
||||
"scripts/finetune.py will be replaced with calling axolotl.cli.train"
|
||||
)
|
||||
)
|
||||
)
|
||||
parsed_cfg = load_cfg(config, **kwargs)
|
||||
check_accelerate_default_config()
|
||||
check_user_token()
|
||||
parser = transformers.HfArgumentParser((TrainerCliArgs))
|
||||
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
|
||||
return_remaining_strings=True
|
||||
|
|
@ -303,8 +79,6 @@ def do_cli(config: Path = Path("examples/"), **kwargs):
|
|||
shard(cfg=parsed_cfg, cli_args=parsed_cli_args)
|
||||
else:
|
||||
dataset_meta = load_datasets(cfg=parsed_cfg, cli_args=parsed_cli_args)
|
||||
if parsed_cli_args.prepare_ds_only:
|
||||
return
|
||||
train(cfg=parsed_cfg, cli_args=parsed_cli_args, dataset_meta=dataset_meta)
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,5 @@
|
|||
# This file is copied from https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.3.0/examples/llama-2/qlora.yml
|
||||
base_model: meta-llama/Llama-2-7b-hf
|
||||
base_model_config: meta-llama/Llama-2-7b-hf
|
||||
# This file is copied from https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/examples/llama-2/qlora.yml
|
||||
base_model: NousResearch/Llama-2-7b-hf
|
||||
model_type: LlamaForCausalLM
|
||||
tokenizer_type: LlamaTokenizer
|
||||
is_llama_derived_model: true
|
||||
|
|
@ -12,8 +11,8 @@ strict: false
|
|||
datasets:
|
||||
- path: mhenrichsen/alpaca_2k_test
|
||||
type: alpaca
|
||||
dataset_prepared_path: last_run_prepared
|
||||
val_set_size: 0.01
|
||||
dataset_prepared_path:
|
||||
val_set_size: 0.05
|
||||
output_dir: ./qlora-out
|
||||
|
||||
adapter: qlora
|
||||
|
|
@ -33,15 +32,12 @@ lora_fan_in_fan_out:
|
|||
wandb_project:
|
||||
wandb_entity:
|
||||
wandb_watch:
|
||||
wandb_run_id:
|
||||
wandb_name:
|
||||
wandb_log_model:
|
||||
|
||||
gradient_accumulation_steps: 2
|
||||
gradient_accumulation_steps: 4
|
||||
micro_batch_size: 1
|
||||
num_epochs: 3
|
||||
# paged_adamw_32bit is not supported
|
||||
# due to bitsandbytes issue https://github.com/TimDettmers/bitsandbytes/issues/1180
|
||||
# optimizer: paged_adamw_32bit
|
||||
num_epochs: 4
|
||||
optimizer: adamw_torch
|
||||
lr_scheduler: cosine
|
||||
learning_rate: 0.0002
|
||||
|
|
@ -61,8 +57,9 @@ xformers_attention:
|
|||
flash_attention: false
|
||||
|
||||
warmup_steps: 10
|
||||
eval_steps: 20
|
||||
save_steps:
|
||||
evals_per_epoch: 4
|
||||
eval_table_size:
|
||||
saves_per_epoch: 1
|
||||
debug:
|
||||
deepspeed:
|
||||
weight_decay: 0.0
|
||||
|
|
|
|||
|
|
@ -1,28 +1,26 @@
|
|||
# This file is copied from https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.3.0/requirements.txt
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
# This file is copied from https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/requirements.txt
|
||||
--extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
|
||||
# torch==2.1.0
|
||||
# auto-gptq
|
||||
packaging
|
||||
packaging==23.2
|
||||
peft==0.5.0
|
||||
transformers==4.34.0
|
||||
tokenizers
|
||||
bitsandbytes>=0.41.1
|
||||
accelerate==0.23.0
|
||||
deepspeed>=0.13.1
|
||||
addict
|
||||
evaluate
|
||||
fire
|
||||
PyYAML>=6.0
|
||||
datasets
|
||||
flash-attn>=2.2.1
|
||||
#flash-attn==2.3.3
|
||||
sentencepiece
|
||||
wandb
|
||||
einops
|
||||
# xformers
|
||||
optimum
|
||||
#xformers==0.0.22
|
||||
optimum==1.13.2
|
||||
hf_transfer
|
||||
colorama
|
||||
numba
|
||||
numpy>=1.24.4
|
||||
mlflow
|
||||
# qlora things
|
||||
bert-score==0.3.13
|
||||
evaluate==0.4.0
|
||||
|
|
@ -31,3 +29,15 @@ scipy
|
|||
scikit-learn==1.2.2
|
||||
pynvml
|
||||
art
|
||||
fschat==0.2.34
|
||||
gradio==3.50.2
|
||||
tensorboard
|
||||
|
||||
mamba-ssm==1.1.1
|
||||
|
||||
# remote filesystems
|
||||
s3fs
|
||||
gcsfs
|
||||
# adlfs
|
||||
|
||||
trl>=0.7.9
|
||||
|
|
|
|||
83
python/llm/example/GPU/LLM-Finetuning/axolotl/train.py
Normal file
83
python/llm/example/GPU/LLM-Finetuning/axolotl/train.py
Normal file
|
|
@ -0,0 +1,83 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# This file is copied from
|
||||
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/src/axolotl/cli/train.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ipex_llm import llm_patch
|
||||
llm_patch(train=True)
|
||||
# The following is the original axolotl train code (without IPEX-LLM)
|
||||
|
||||
"""
|
||||
CLI to run training on a model
|
||||
"""
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Tuple
|
||||
|
||||
import fire
|
||||
import transformers
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
|
||||
from axolotl.cli import (
|
||||
check_accelerate_default_config,
|
||||
check_user_token,
|
||||
load_cfg,
|
||||
load_datasets,
|
||||
load_rl_datasets,
|
||||
print_axolotl_text_art,
|
||||
)
|
||||
from axolotl.common.cli import TrainerCliArgs
|
||||
from axolotl.train import train
|
||||
|
||||
LOG = logging.getLogger("axolotl.cli.train")
|
||||
|
||||
|
||||
def do_cli(config: Path = Path("examples/"), **kwargs):
|
||||
# pylint: disable=duplicate-code
|
||||
parsed_cfg = load_cfg(config, **kwargs)
|
||||
parser = transformers.HfArgumentParser((TrainerCliArgs))
|
||||
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
|
||||
return_remaining_strings=True
|
||||
)
|
||||
return do_train(parsed_cfg, parsed_cli_args)
|
||||
|
||||
|
||||
def do_train(cfg, cli_args) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
|
||||
print_axolotl_text_art()
|
||||
check_accelerate_default_config()
|
||||
check_user_token()
|
||||
if cfg.rl:
|
||||
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
|
||||
else:
|
||||
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
||||
|
||||
return train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(do_cli)
|
||||
|
|
@ -47,6 +47,8 @@ def llm_patch(train=False):
|
|||
replace_attr(transformers, "AutoModelForCausalLM", AutoModelForCausalLM)
|
||||
replace_attr(transformers, "LlamaForCausalLM", AutoModelForCausalLM)
|
||||
replace_attr(transformers, "AutoModel", AutoModel)
|
||||
from ipex_llm.transformers.utils import is_torch_bf16_gpu_available
|
||||
replace_attr(transformers.utils, "is_torch_bf16_gpu_available", is_torch_bf16_gpu_available)
|
||||
|
||||
import_peft_check = 'peft' in sys.modules or 'peft.utils' in sys.modules or \
|
||||
'peft.tuners' in sys.modules or 'peft.mapping' in sys.modules
|
||||
|
|
|
|||
|
|
@ -335,3 +335,7 @@ def get_modelscope_hf_config(model_id_or_path: str,
|
|||
elif os.path.isfile(model_id_or_path):
|
||||
local_path = model_id_or_path
|
||||
return Config._file2dict(local_path)
|
||||
|
||||
def is_torch_bf16_gpu_available():
|
||||
# always true for XPU and CPU
|
||||
return True
|
||||
|
|
|
|||
Loading…
Reference in a new issue