ipex-llm/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/generate.py
Jin, Qiao db7500bfd4
Add Qwen2.5 GPU example (#12101)
* Add Qwen2.5 GPU example

* fix end line

* fix description
2024-09-20 15:55:57 +08:00

90 lines
3.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2.5 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2.5-7B-Instruct",
help='The huggingface repo id for the Qwen2.5 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
from ipex_llm.transformers import AutoModelForCausalLM
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
model = model.half().to("xpu")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
prompt = args.prompt
# Generate predicted tokens
with torch.inference_mode():
# The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2.5-7B-Instruct#quickstart
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("xpu")
# warmup
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=args.n_predict
)
st = time.time()
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=args.n_predict
)
torch.xpu.synchronize()
end = time.time()
generated_ids = generated_ids.cpu()
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(response)