Add Qwen2.5 GPU example (#12101)

* Add Qwen2.5 GPU example

* fix end line

* fix description
This commit is contained in:
Jin, Qiao 2024-09-20 15:55:57 +08:00 committed by GitHub
parent b36359e2ab
commit db7500bfd4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 257 additions and 2 deletions

View file

@ -275,6 +275,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen) |
| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
| Qwen2.5 | | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) |
| Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl) |
| Qwen2-Audio | | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio) |
| Aquila | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila) |

View file

@ -0,0 +1,164 @@
# Qwen2.5
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen2.5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct), [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) and [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) as reference Qwen2.5 models.
## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Qwen2.5 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
### 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
</details>
<details>
<summary>For Intel Data Center GPU Max Series</summary>
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>
<summary>For Intel iGPU</summary>
```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```
</details>
#### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
</details>
<details>
<summary>For Intel Arc™ A-Series Graphics</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
```
</details>
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen2.5 model (e.g. `Qwen/Qwen2.5-7B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen2.5-7B-Instruct'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
##### [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
AI是什么
-------------------- Output --------------------
AI是Artificial Intelligence的缩写意为“人工智能”是指由人制造出来的系统能够进行类似于人类智慧的行为如学习、推理
```
```log
Inference time: xxxx s
-------------------- Prompt --------------------
What is AI?
-------------------- Output --------------------
AI, or Artificial Intelligence, refers to the ability exhibited by machines to imitate human behavior and intelligence. This includes learning, problem-solving, perception, understanding language
```
##### [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
AI是什么
-------------------- Output --------------------
AI是“人工智能”Artificial Intelligence的缩写。它是一门研究如何创建智能机器的学科这些机器能够执行通常需要人类
```
```log
Inference time: xxxx s
-------------------- Prompt --------------------
What is AI?
-------------------- Output --------------------
Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think, learn, and perform tasks that typically require human intelligence.
```
##### [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
AI是什么
-------------------- Output --------------------
AI是“人工智能”的简称是指由人结合科学原理设计并通过工程实践创造的能够完成特定任务的软件或硬件系统。这些系统
```
```log
Inference time: xxxx s
-------------------- Prompt --------------------
What is AI?
-------------------- Output --------------------
Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that would typically require human intelligence. These tasks can include things like visual perception
```

View file

@ -0,0 +1,90 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2.5 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2.5-7B-Instruct",
help='The huggingface repo id for the Qwen2.5 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
from ipex_llm.transformers import AutoModelForCausalLM
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
model = model.half().to("xpu")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
prompt = args.prompt
# Generate predicted tokens
with torch.inference_mode():
# The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2.5-7B-Instruct#quickstart
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("xpu")
# warmup
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=args.n_predict
)
st = time.time()
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=args.n_predict
)
torch.xpu.synchronize()
end = time.time()
generated_ids = generated_ids.cpu()
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(response)

View file

@ -135,7 +135,7 @@ AI, or Artificial Intelligence, refers to the simulation of human intelligence i
##### [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct)
```log
Inference time: 0.33887791633605957 s
Inference time: xxxx s
-------------------- Prompt --------------------
AI是什么
-------------------- Output --------------------
@ -143,7 +143,7 @@ AI是人工智能的简称是一种计算机科学和技术领域旨在使
```
```log
Inference time: 0.340407133102417 s
Inference time: xxxx s
-------------------- Prompt --------------------
What is AI?
-------------------- Output --------------------