78 lines
3.4 KiB
Markdown
78 lines
3.4 KiB
Markdown
# Run ModelScope Model
|
||
|
||
In this directory, you will find example on how you could apply BigDL-LLM INT4 optimizations on ModelScope models. For illustration purposes, we utilize the [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary) as a reference ModelScope model.
|
||
|
||
## 0. Requirements
|
||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||
|
||
## Example: Predict Tokens using `generate()` API
|
||
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||
### 1. Install
|
||
We suggest using conda to manage environment:
|
||
```bash
|
||
conda create -n llm python=3.9
|
||
conda activate llm
|
||
|
||
pip install --pre --upgrade bigdl-llm[all] # install bigdl-llm with 'all' option
|
||
pip install modelscope
|
||
```
|
||
|
||
### 2. Run
|
||
```
|
||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||
```
|
||
|
||
Arguments info:
|
||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the ModelScope repo id for the ModelScope ChatGLM3 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'ZhipuAI/chatglm3-6b'`.
|
||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||
|
||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||
>
|
||
> Please select the appropriate size of the ChatGLM3 model based on the capabilities of your machine.
|
||
|
||
#### 2.1 Client
|
||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||
```powershell
|
||
python ./generate.py
|
||
```
|
||
|
||
#### 2.2 Server
|
||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||
|
||
E.g. on Linux,
|
||
```bash
|
||
# set BigDL-LLM env variables
|
||
source bigdl-llm-init
|
||
|
||
# e.g. for a server with 48 cores per socket
|
||
export OMP_NUM_THREADS=48
|
||
numactl -C 0-47 -m 0 python ./generate.py
|
||
```
|
||
|
||
#### 2.3 Sample Output
|
||
#### [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary)
|
||
```log
|
||
Inference time: xxxx s
|
||
-------------------- Prompt --------------------
|
||
<|user|>
|
||
AI是什么?
|
||
<|assistant|>
|
||
-------------------- Output --------------------
|
||
[gMASK]sop <|user|>
|
||
AI是什么?
|
||
<|assistant|> AI是人工智能(Artificial Intelligence)的缩写,指的是通过计算机程序和算法模拟人类智能的技术。AI可以帮助我们解决各种问题,例如语音
|
||
```
|
||
|
||
```log
|
||
Inference time: xxxx s
|
||
-------------------- Prompt --------------------
|
||
<|user|>
|
||
What is AI?
|
||
<|assistant|>
|
||
-------------------- Output --------------------
|
||
[gMASK]sop <|user|>
|
||
What is AI?
|
||
<|assistant|>
|
||
AI stands for Artificial Intelligence. It refers to the development of computer systems that can perform tasks that would normally require human intelligence, such as recognizing speech or making
|
||
```
|