ipex-llm/python/llm/test/inference_gpu/test_transformers_api.py
Yuwen Hu c6d4f91777 [LLM] Add UTs of load_low_bit for transformers-style API (#10001)
* Add uts for transformers api load_low_bit generation

* Small fixes

* Remove replit-code for CPU tests due to current load_low_bit issue on MPT

* Small change

* Small reorganization to llm unit tests on CPU

* Small fixes
2024-01-29 10:18:23 +08:00

261 lines
12 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os, time
import pytest
import tempfile
import torch
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel, AutoModelForSpeechSeq2Seq
from transformers import LlamaTokenizer, AutoTokenizer
device = os.environ['DEVICE']
print(f'Running on {device}')
@pytest.mark.parametrize('prompt, answer', [
('What is the capital of France?\n\n', 'Paris')
])
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
(AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')),
(AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')),
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH')),
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
])
def test_completion(Model, Tokenizer, model_path, prompt, answer):
with torch.inference_mode():
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True)
model = model.to(device)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
output = model.generate(input_ids, max_new_tokens=32)
model.to('cpu') # deallocate gpu memory
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
assert answer in output_str
@pytest.mark.parametrize('prompt, answer', [
('What is the capital of France?\n\n', 'Paris')
])
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
(AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')),
(AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')),
])
def test_load_low_bit_completion(Model, Tokenizer, model_path, prompt, answer):
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True)
with tempfile.TemporaryDirectory() as tempdir:
model.save_low_bit(tempdir)
loaded_model = Model.load_low_bit(tempdir,
optimize_model=True,
trust_remote_code=True)
with torch.inference_mode():
loaded_model = loaded_model.to(device)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
output = loaded_model.generate(input_ids, max_new_tokens=32)
loaded_model.to('cpu') # deallocate gpu memory
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
assert answer in output_str
def test_transformers_auto_model_for_speech_seq2seq_int4():
with torch.inference_mode():
from transformers import WhisperProcessor
from datasets import load_from_disk
model_path = os.environ.get('WHISPER_TINY_ORIGIN_PATH')
dataset_path = os.environ.get('SPEECH_DATASET_PATH')
processor = WhisperProcessor.from_pretrained(model_path)
ds = load_from_disk(dataset_path)
sample = ds[0]["audio"]
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
input_features = input_features.to(device)
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True, optimize_model=True)
model = model.to(device)
predicted_ids = model.generate(input_features)
# decode token ids to text
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
model.to('cpu')
print('Output:', transcription)
assert 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0]
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
# @pytest.mark.parametrize('Model, Tokenizer, model_path',[
# (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
# (AutoModelForCausalLM, AutoTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH'))
# ])
# def test_optimize_model(Model, Tokenizer, model_path):
# with torch.inference_mode():
# tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
# input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
# model = Model.from_pretrained(model_path,
# load_in_4bit=True,
# optimize_model=False,
# trust_remote_code=True)
# model = model.to(device)
# logits_base_model = (model(input_ids)).logits
# model.to('cpu') # deallocate gpu memory
# model = Model.from_pretrained(model_path,
# load_in_4bit=True,
# optimize_model=True,
# trust_remote_code=True)
# model = model.to(device)
# logits_optimized_model = (model(input_ids)).logits
# model.to('cpu')
# tol = 1e-02
# num_false = torch.isclose(logits_optimized_model, logits_base_model, rtol=tol, atol=tol)\
# .flatten().tolist().count(False)
# percent_false = num_false / logits_optimized_model.numel()
# assert percent_false < 1e-02
class Test_Optimize_Gpu_Model:
def setup(self):
self.layer_outputs = []
self.pre_layer_outputs = []
def run_optimize_gpu_model(self, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound):
with torch.inference_mode():
def forward_hook(module, input, output, layer_name):
self.layer_outputs.append(output)
def pre_forward_hook(module, input, output, layer_name):
self.pre_layer_outputs.append(output)
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
model = model.to(device)
for layer_name, layer_module in model.named_modules():
if layer_name == layer_norm:
layer_module.register_forward_hook(
lambda module, input, output, layer_name=layer_name: pre_forward_hook(module, input,
output, layer_name))
if layer_name == self_attn:
layer_module.register_forward_hook(
lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
output, layer_name))
logits_base_model = (model(input_ids)).logits
# the list `layer_output` has only one element.
layer_tensor = self.layer_outputs.pop()
model.to('cpu')
opt_model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True)
opt_model = opt_model.to(device)
def replace_forward_hook(module, input, output, layer_name):
output = self.pre_layer_outputs[0]
return output
for layer_name, layer_module in opt_model.named_modules():
if layer_name == layer_norm:
layer_module.register_forward_hook(
lambda module, input, output, layer_name=layer_name: replace_forward_hook(module, input,
output, layer_name))
if layer_name == self_attn:
layer_module.register_forward_hook(
lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
output, layer_name))
logits_optimized_model = (opt_model(input_ids)).logits
# the list `layer_output` has only one element.
opt_layer_tensor = self.layer_outputs[0]
opt_model.to('cpu')
attn_output_diff = []
for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
if t1 is not None and t2 is not None:
if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
# 'attn_output' is of type torch.Tensor.
attn_output_diff.append(t1 - t2)
else:
# 'past_key_value'is of type tuple as default.
for i, (t3, t4) in enumerate(zip(t1, t2)):
if model.config.architectures[0] == "ChatGLMModel" and \
hasattr(model.config, 'padded_vocab_size') and \
model.config.padded_vocab_size == 65024:
# chatglm2's past_key_value is expanded 16x for some speedup.
# We need to narrow it here.
t4 = t4[:, :, 15:17, :]
attn_output_diff.append(t3 - t4)
max_diff_tensor = [torch.max(item).item() for item in attn_output_diff]
print(max_diff_tensor)
assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
# def test_falcon_gpu_model(self):
# Model = AutoModelForCausalLM
# Tokenizer = AutoTokenizer
# model_path = os.environ.get('FALCON_7B_ORIGIN_PATH')
# # currently only compare the output of the last self-attention layer.
# layer_norm = "transformer.h.31.input_layernorm"
# self_attn = "transformer.h.31.self_attention"
# lower_bound = 0
# self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
# def test_llama_gpu_model(self):
# Model = AutoModelForCausalLM
# Tokenizer = AutoTokenizer
# model_path = os.environ.get('LLAMA2_7B_ORIGIN_PATH')
# # currently only compare the output of the last self-attention layer.
# layer_norm = "model.layers.31.input_layernorm"
# self_attn = "model.layers.31.self_attn"
# lower_bound = 5e-2
# self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
# def test_chatglm2_gpu_model(self):
# Model = AutoModel
# Tokenizer = AutoTokenizer
# model_path = os.environ.get('CHATGLM2_6B_ORIGIN_PATH')
# # currently only need to compare the output of one self-attention layer.
# layer_norm = "transformer.encoder.layers.27.input_layernorm"
# self_attn = "transformer.encoder.layers.27.self_attention"
# lower_bound = 1e-3
# self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
if __name__ == '__main__':
pytest.main([__file__])