[LLM] Add UTs of load_low_bit for transformers-style API (#10001)
* Add uts for transformers api load_low_bit generation * Small fixes * Remove replit-code for CPU tests due to current load_low_bit issue on MPT * Small change * Small reorganization to llm unit tests on CPU * Small fixes
This commit is contained in:
parent
d720554d43
commit
c6d4f91777
6 changed files with 121 additions and 66 deletions
|
|
@ -1,59 +0,0 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os
|
||||
import pytest
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
|
||||
from transformers import LlamaTokenizer, AutoTokenizer
|
||||
|
||||
|
||||
llama_model_path = os.environ.get('LLAMA_ORIGIN_PATH')
|
||||
bloom_model_path = os.environ.get('BLOOM_ORIGIN_PATH')
|
||||
chatglm2_6b_model_path = os.environ.get('ORIGINAL_CHATGLM2_6B_PATH')
|
||||
replit_code_model_path = os.environ.get('ORIGINAL_REPLIT_CODE_PATH')
|
||||
|
||||
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
||||
|
||||
@pytest.mark.parametrize("Model, Tokenizer, model_path, prompt", [
|
||||
(AutoModelForCausalLM, LlamaTokenizer, llama_model_path, prompt),
|
||||
(AutoModelForCausalLM, AutoTokenizer, bloom_model_path, prompt),
|
||||
(AutoModel, AutoTokenizer, chatglm2_6b_model_path, prompt),
|
||||
(AutoModelForCausalLM, AutoTokenizer, replit_code_model_path, prompt)
|
||||
])
|
||||
|
||||
def test_optimize_model(Model, Tokenizer, model_path, prompt):
|
||||
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
|
||||
model = Model.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
trust_remote_code=True)
|
||||
logits_base_model = (model(input_ids)).logits
|
||||
|
||||
model = Model.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True)
|
||||
logits_optimized_model = (model(input_ids)).logits
|
||||
diff = abs(logits_base_model - logits_optimized_model).flatten()
|
||||
|
||||
assert any(diff) is False
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
pytest.main([__file__])
|
||||
|
|
@ -17,11 +17,13 @@
|
|||
|
||||
import unittest
|
||||
import os
|
||||
import pytest
|
||||
import tempfile
|
||||
import time
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM, AutoModelForSpeechSeq2Seq
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import AutoTokenizer, LlamaTokenizer
|
||||
|
||||
class TestTransformersAPI(unittest.TestCase):
|
||||
|
||||
|
|
@ -109,5 +111,60 @@ class TestTransformersAPI(unittest.TestCase):
|
|||
res = 'Paris' in output_str
|
||||
self.assertTrue(res)
|
||||
|
||||
@pytest.mark.parametrize('prompt, answer', [
|
||||
('What is the capital of France?\n\n', 'Paris')
|
||||
])
|
||||
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
|
||||
(AutoModel, AutoTokenizer, os.environ.get('ORIGINAL_CHATGLM2_6B_PATH')),
|
||||
])
|
||||
def test_load_low_bit_completion(Model, Tokenizer, model_path, prompt, answer):
|
||||
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = Model.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tempdir:
|
||||
model.save_low_bit(tempdir)
|
||||
loaded_model = Model.load_low_bit(tempdir,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True)
|
||||
|
||||
with torch.inference_mode():
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
output = loaded_model.generate(input_ids, max_new_tokens=32)
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
|
||||
assert answer in output_str
|
||||
|
||||
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
||||
|
||||
@pytest.mark.parametrize("Model, Tokenizer, model_path, prompt", [
|
||||
(AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA_ORIGIN_PATH'), prompt),
|
||||
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('BLOOM_ORIGIN_PATH'), prompt),
|
||||
(AutoModel, AutoTokenizer, os.environ.get('ORIGINAL_CHATGLM2_6B_PATH'), prompt),
|
||||
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('ORIGINAL_REPLIT_CODE_PATH'), prompt)
|
||||
])
|
||||
|
||||
def test_optimize_model(Model, Tokenizer, model_path, prompt):
|
||||
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
|
||||
model = Model.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
trust_remote_code=True)
|
||||
logits_base_model = (model(input_ids)).logits
|
||||
|
||||
model = Model.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True)
|
||||
logits_optimized_model = (model(input_ids)).logits
|
||||
diff = abs(logits_base_model - logits_optimized_model).flatten()
|
||||
|
||||
assert any(diff) is False
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
pytest.main([__file__])
|
||||
|
|
|
|||
|
|
@ -16,6 +16,8 @@
|
|||
|
||||
import os
|
||||
import pytest
|
||||
import tempfile
|
||||
import torch
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
|
|
@ -48,6 +50,31 @@ def test_optimize_model(Model, Tokenizer, model_path, prompt):
|
|||
|
||||
assert any(diff) is False
|
||||
|
||||
@pytest.mark.parametrize('prompt, answer', [
|
||||
('What is the capital of France?\n\n', 'Paris')
|
||||
])
|
||||
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
|
||||
(AutoModelForCausalLM, AutoTokenizer, mistral_model_path),
|
||||
])
|
||||
def test_load_low_bit_completion(Model, Tokenizer, model_path, prompt, answer):
|
||||
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = Model.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tempdir:
|
||||
model.save_low_bit(tempdir)
|
||||
loaded_model = Model.load_low_bit(tempdir,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True)
|
||||
|
||||
with torch.inference_mode():
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
output = loaded_model.generate(input_ids, max_new_tokens=32)
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
|
||||
assert answer in output_str
|
||||
|
||||
if __name__ == '__main__':
|
||||
pytest.main([__file__])
|
||||
|
|
@ -17,6 +17,7 @@
|
|||
|
||||
import os, time
|
||||
import pytest
|
||||
import tempfile
|
||||
|
||||
import torch
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel, AutoModelForSpeechSeq2Seq
|
||||
|
|
@ -50,6 +51,36 @@ def test_completion(Model, Tokenizer, model_path, prompt, answer):
|
|||
|
||||
assert answer in output_str
|
||||
|
||||
@pytest.mark.parametrize('prompt, answer', [
|
||||
('What is the capital of France?\n\n', 'Paris')
|
||||
])
|
||||
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
|
||||
(AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')),
|
||||
(AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')),
|
||||
])
|
||||
def test_load_low_bit_completion(Model, Tokenizer, model_path, prompt, answer):
|
||||
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = Model.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tempdir:
|
||||
model.save_low_bit(tempdir)
|
||||
loaded_model = Model.load_low_bit(tempdir,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True)
|
||||
|
||||
with torch.inference_mode():
|
||||
loaded_model = loaded_model.to(device)
|
||||
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
||||
output = loaded_model.generate(input_ids, max_new_tokens=32)
|
||||
loaded_model.to('cpu') # deallocate gpu memory
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
|
||||
assert answer in output_str
|
||||
|
||||
def test_transformers_auto_model_for_speech_seq2seq_int4():
|
||||
with torch.inference_mode():
|
||||
from transformers import WhisperProcessor
|
||||
|
|
|
|||
|
|
@ -9,18 +9,17 @@ set -e
|
|||
echo "# Start testing inference"
|
||||
start=$(date "+%s")
|
||||
|
||||
python -m pytest -s ${LLM_INFERENCE_TEST_DIR} -k "not test_transformers" -v \
|
||||
--ignore=${LLM_INFERENCE_TEST_DIR}/test_optimize_mistral.py
|
||||
python -m pytest -s ${LLM_INFERENCE_TEST_DIR}/test_call_models.py -v
|
||||
|
||||
if [ -z "$THREAD_NUM" ]; then
|
||||
THREAD_NUM=2
|
||||
fi
|
||||
export OMP_NUM_THREADS=$THREAD_NUM
|
||||
python -m pytest -s ${LLM_INFERENCE_TEST_DIR} -k test_transformers -v \
|
||||
--ignore=${LLM_INFERENCE_TEST_DIR}/test_optimize_mistral.py
|
||||
python -m pytest -s ${LLM_INFERENCE_TEST_DIR}/test_transformers_api.py -v
|
||||
python -m pytest -s ${LLM_INFERENCE_TEST_DIR}/test_optimize_model_api.py -v
|
||||
|
||||
python -m pip install transformers==4.34.0
|
||||
python -m pytest -s ${LLM_INFERENCE_TEST_DIR}/test_optimize_mistral.py -v
|
||||
python -m pytest -s ${LLM_INFERENCE_TEST_DIR}/test_transformesr_api_434.py -v
|
||||
python -m pip install transformers==4.31.0
|
||||
|
||||
now=$(date "+%s")
|
||||
|
|
|
|||
Loading…
Reference in a new issue