131 lines
		
	
	
	
		
			5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
	
		
			5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# Llama2-32k
 | 
						|
In this directory, you will find examples on how you could apply IPEX-LLM INT4/FP8 optimizations on Llama2-32K models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [togethercomputer/Llama-2-7B-32K-Instruct](https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct) as reference Llama2-32K models.
 | 
						|
 | 
						|
## 0. Requirements
 | 
						|
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
						|
 | 
						|
## Example: Predict Tokens using `generate()` API
 | 
						|
In the example [generate.py](./generate.py), we show a basic use case for a Llama2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4/FP8 optimizations on Intel GPUs.
 | 
						|
### 1. Install
 | 
						|
#### 1.1 Installation on Linux
 | 
						|
We suggest using conda to manage environment:
 | 
						|
```bash
 | 
						|
conda create -n llm python=3.11
 | 
						|
conda activate llm
 | 
						|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
						|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
						|
```
 | 
						|
 | 
						|
#### 1.2 Installation on Windows
 | 
						|
We suggest using conda to manage environment:
 | 
						|
```bash
 | 
						|
conda create -n llm python=3.11 libuv
 | 
						|
conda activate llm
 | 
						|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
						|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
						|
```
 | 
						|
 | 
						|
### 2. Configures OneAPI environment variables
 | 
						|
#### 2.1 Configurations for Linux
 | 
						|
```bash
 | 
						|
source /opt/intel/oneapi/setvars.sh
 | 
						|
```
 | 
						|
#### 2.2 Configurations for Windows
 | 
						|
```cmd
 | 
						|
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
 | 
						|
```
 | 
						|
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
 | 
						|
### 3. Runtime Configurations
 | 
						|
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 | 
						|
#### 3.1 Configurations for Linux
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
						|
 | 
						|
```bash
 | 
						|
export USE_XETLA=OFF
 | 
						|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
						|
```
 | 
						|
 | 
						|
</details>
 | 
						|
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel Data Center GPU Max Series</summary>
 | 
						|
 | 
						|
```bash
 | 
						|
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
						|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
						|
export ENABLE_SDP_FUSION=1
 | 
						|
```
 | 
						|
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
						|
</details>
 | 
						|
 | 
						|
#### 3.2 Configurations for Windows
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel iGPU</summary>
 | 
						|
 | 
						|
```cmd
 | 
						|
set SYCL_CACHE_PERSISTENT=1
 | 
						|
set BIGDL_LLM_XMX_DISABLED=1
 | 
						|
```
 | 
						|
 | 
						|
</details>
 | 
						|
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel Arc™ A300-Series or Pro A60</summary>
 | 
						|
 | 
						|
```cmd
 | 
						|
set SYCL_CACHE_PERSISTENT=1
 | 
						|
```
 | 
						|
 | 
						|
</details>
 | 
						|
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For other Intel dGPU Series</summary>
 | 
						|
 | 
						|
There is no need to set further environment variables.
 | 
						|
 | 
						|
</details>
 | 
						|
 | 
						|
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
						|
### 4. Running examples
 | 
						|
#### 4.1 Using simple prompt
 | 
						|
```
 | 
						|
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --low-bit LOW_BIT
 | 
						|
```
 | 
						|
 | 
						|
Arguments info:
 | 
						|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `togethercomputer/Llama-2-7B-32K-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'togethercomputer/Llama-2-7B-32K-Instruct'`.
 | 
						|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
						|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
						|
- `--low-bit LOW_BIT`: argument defining which low bit optimization to use. Options are sym_int4 or fp8. It is default to be `sym_int4`.
 | 
						|
 | 
						|
#### 4.2 Using long context input prompt
 | 
						|
You can set the `prompt` argument to be a `.txt` file path containing the long context prompt text. An example command using the 8k input size prompt we provide is given below:
 | 
						|
```
 | 
						|
python ./generate.py --repo-id-or-model-path togethercomputer/Llama-2-7B-32K-Instruct --prompt 8k.txt
 | 
						|
```
 | 
						|
> Note: If you need to run longer input or use less memory, please set `IPEX_LLM_LOW_MEM=1`, which will enable memory optimization and may slightly affect the latency performance.
 | 
						|
#### Sample Output
 | 
						|
#### [togethercomputer/Llama-2-7B-32K-Instruct](https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct)
 | 
						|
```log
 | 
						|
Inference time: xxxx s
 | 
						|
-------------------- Prompt --------------------
 | 
						|
<s>[INST] <<SYS>>
 | 
						|
 | 
						|
<</SYS>>
 | 
						|
 | 
						|
What is AI? [/INST]
 | 
						|
-------------------- Output --------------------
 | 
						|
[INST] <<SYS>>
 | 
						|
 | 
						|
<</SYS>>
 | 
						|
 | 
						|
What is AI? [/INST]
 | 
						|
 | 
						|
AI is a broad field of study that deals with the creation of intelligent agents, which are systems that can perform tasks that typically require human intelligence
 | 
						|
```
 |