ipex-llm/python/llm/example/GPU
Qiyuan Gong f2e923b3ca
Axolotl v0.4.0 support (#10773)
* Add Axolotl 0.4.0, remove legacy 0.3.0 support.
* replace is_torch_bf16_gpu_available
* Add HF_HUB_OFFLINE=1
* Move transformers out of requirement
* Refine readme and qlora.yml
2024-04-17 09:49:11 +08:00
..
Applications Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
Deepspeed-AutoTP Update FLEX in Deepspeed README (#10774) 2024-04-17 09:28:24 +08:00
Deepspeed-AutoTP-FastAPI Add deepsped-autoTP-Fastapi serving (#10748) 2024-04-16 14:03:23 +08:00
HF-Transformers-AutoModels GPU configuration update for examples (windows pip installer, etc.) (#10762) 2024-04-15 17:42:52 +08:00
LangChain Add tokenizer_id in Langchain (#10588) 2024-04-03 14:25:35 +08:00
LlamaIndex Llamaindex: add tokenizer_id and support chat (#10590) 2024-04-07 13:51:34 +08:00
LLM-Finetuning Axolotl v0.4.0 support (#10773) 2024-04-17 09:49:11 +08:00
Long-Context Add chatglm3 long input example (#10739) 2024-04-11 16:33:43 +08:00
ModelScope-Models Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
Pipeline-Parallel-Inference Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
PyTorch-Models GPU configuration update for examples (windows pip installer, etc.) (#10762) 2024-04-15 17:42:52 +08:00
Speculative-Decoding Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
vLLM-Serving Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
README.md Add deepsped-autoTP-Fastapi serving (#10748) 2024-04-16 14:03:23 +08:00

IPEX-LLM Examples on Intel GPU

This folder contains examples of running IPEX-LLM on Intel GPU:

  • Applications: running LLM applications (such as autogen) on IPEX-LLM
  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on IPEX-LLM (using the standard AutoModel APIs)
  • LLM-Finetuning: running finetuning (such as LoRA, QLoRA, QA-LoRA, etc) using IPEX-LLM on Intel GPUs
  • vLLM-Serving: running vLLM serving framework on intel GPUs (with IPEX-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with IPEX-LLM low-bit optimized models) on Intel GPUs
  • Deepspeed-AutoTP-FastApi: running distributed inference using DeepSpeed AutoTP and start serving with FastApi(with IPEX-LLM low-bit optimized models) on Intel GPUs
  • LangChain: running LangChain applications on IPEX-LLM
  • PyTorch-Models: running any PyTorch model on IPEX-LLM (with "one-line code change")
  • Speculative-Decoding: running any Hugging Face Transformers model with self-speculative decoding on Intel GPUs
  • ModelScope-Models: running ModelScope model with IPEX-LLM on Intel GPUs

System Support

1. Linux:

Hardware:

  • Intel Arc™ A-Series Graphics
  • Intel Data Center GPU Flex Series
  • Intel Data Center GPU Max Series

Operating System:

  • Ubuntu 20.04 or later (Ubuntu 22.04 is preferred)

2. Windows

Hardware:

  • Intel iGPU and dGPU

Operating System:

  • Windows 10/11, with or without WSL

Requirements

To apply Intel GPU acceleration, therere several steps for tools installation and environment preparation. See the GPU installation guide for mode details.