* Add tutorial notebook * Add md * Test on readthedocs * Fix markdown * fix md * update notebooks * update requirements version in doc * update * add and update tutorial * add unit test for tensorflow tutorial * reduce test time * reduce test time * update shell * update action * Update tutorial * reduce ut time * reduce ut time * reduce ut time * reduce ut time * reduce ut time * Update * Fix shell * update * update * rollback requirements * Update * Update Co-authored-by: pinggao187 <ping.gao3@pactera.com>
		
			
				
	
	
	
	
		
			6.3 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	Nano Tutorial
- 
BigDL-Nano PyTorch Trainer Quickstart
In this guide we will describe how to scale out PyTorch programs using Nano Trainer
 
- 
BigDL-Nano PyTorch TorchNano Quickstart
In this guide we'll describe how to use BigDL-Nano to accelerate custom training loop easily with very few changes
 
- 
BigDL-Nano TensorFlow Training Quickstart
In this guide we will describe how to accelerate TensorFlow Keras applications on training workloads with BigDL-Nano
 
- 
BigDL-Nano PyTorch ONNXRuntime Acceleration Quickstart
In this guide we will describe how to apply ONNXRuntime Acceleration on inference pipeline with the APIs delivered by BigDL-Nano
 
- 
BigDL-Nano PyTorch OpenVINO Acceleration Quickstart
In this guide we will describe how to apply OpenVINO Acceleration on inference pipeline with the APIs delivered by BigDL-Nano
 
- 
BigDL-Nano PyTorch Quantization with INC Quickstart
In this guide we will describe how to obtain a quantized model with the APIs delivered by BigDL-Nano
 
- 
BigDL-Nano PyTorch Quantization with ONNXRuntime accelerator Quickstart
In this guide we will describe how to obtain a quantized model running inference in the ONNXRuntime engine with the APIs delivered by BigDL-Nano
 
- 
BigDL-Nano PyTorch Quantization with POT Quickstart
In this guide we will describe how to obtain a quantized model with the APIs delivered by BigDL-Nano
 
- 
BigDL-Nano TensorFlow Quantization with INC Quickstart
In this guide we will demonstrates how to apply Post-training quantization on a keras model with BigDL-Nano.
 
- 
BigDL-Nano TensorFlow SparseEmbedding and SparseAdam
In this guide we demonstrates how to use SparseEmbedding and SparseAdam to obtain stroger performance with sparse gradient
 
- 
BigDL-Nano Hyperparameter Tuning (Tensorflow Sequential/Functional API) Quickstart
In this guide we will describe how to use Nano's built-in HPO utils to do hyperparameter tuning for models defined using Tensorflow Sequential or Functional API.
 
- 
BigDL-Nano Hyperparameter Tuning (Tensorflow Subclassing Model) Quickstart
In this guide we will describe how to use Nano's built-in HPO utils to do hyperparameter tuning for models defined by subclassing tf.keras.Model.
 

