* Change installation address Change former address: "https://docs.conda.io/en/latest/miniconda.html#" to new address: "https://conda-forge.org/download/" for 63 occurrences under python\llm\example * Change Prompt Change "Anaconda Prompt" to "Miniforge Prompt" for 1 occurrence * Create and update model minicpm * Update model minicpm Update model minicpm under GPU/PyTorch-Models * Update readme and generate.py change "prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)" and delete "pip install transformers==4.37.0 " * Update comments for minicpm GPU Update comments for generate.py at minicpm GPU * Add CPU example for MiniCPM * Update minicpm README for CPU * Update README for MiniCPM and Llama3 * Update Readme for Llama3 CPU Pytorch * Update and fix comments for MiniCPM
		
			
				
	
	
		
			74 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			74 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
 | 
						|
from transformers import AutoTokenizer, AutoModelForCausalLM
 | 
						|
from ipex_llm import optimize_model
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-2B-sft-bf16",
 | 
						|
                        help='The huggingface repo id for the MiniCPM model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    # Load model
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                 trust_remote_code=True,
 | 
						|
                                                 torch_dtype='auto',
 | 
						|
                                                 low_cpu_mem_usage=True,
 | 
						|
                                                 use_cache=True)
 | 
						|
 | 
						|
    # With only one line to enable IPEX-LLM optimization on model
 | 
						|
    model = optimize_model(model)
 | 
						|
 | 
						|
    # Load tokenizer
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
						|
                                              trust_remote_code=True)
 | 
						|
    
 | 
						|
    # Generate predicted tokens
 | 
						|
    with torch.inference_mode():
 | 
						|
 | 
						|
        # here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16/blob/79fbb1db171e6d8bf77cdb0a94076a43003abd9e/modeling_minicpm.py#L1320
 | 
						|
        chat = [
 | 
						|
            { "role": "user", "content": args.prompt },
 | 
						|
        ]
 | 
						|
        prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
						|
 | 
						|
        # start inference
 | 
						|
        st = time.time()
 | 
						|
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                do_sample=False,
 | 
						|
                                max_new_tokens=args.n_predict)
 | 
						|
        end = time.time()
 | 
						|
        output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        print('-'*20, 'Prompt', '-'*20)
 | 
						|
        print(prompt)
 | 
						|
        print('-'*20, 'Output', '-'*20)
 | 
						|
        print(output_str)
 |