Add CPU and GPU example for MiniCPM (#11202)

* Change installation address

Change former address: "https://docs.conda.io/en/latest/miniconda.html#" to new address: "https://conda-forge.org/download/" for 63 occurrences under python\llm\example

* Change Prompt

Change "Anaconda Prompt" to "Miniforge Prompt" for 1 occurrence

* Create and update model minicpm

* Update model minicpm

Update model minicpm under GPU/PyTorch-Models

* Update readme and generate.py

change "prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)" and delete "pip install transformers==4.37.0
"

* Update comments for minicpm GPU

Update comments for generate.py at minicpm GPU

* Add CPU example for MiniCPM

* Update minicpm README for CPU

* Update README for MiniCPM and Llama3

* Update Readme for Llama3 CPU Pytorch

* Update and fix comments for MiniCPM
This commit is contained in:
Zijie Li 2024-06-05 18:09:53 +08:00 committed by GitHub
parent a27a559650
commit bfa1367149
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
13 changed files with 710 additions and 2 deletions

View file

@ -207,6 +207,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| CodeGemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegemma) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegemma) |
| Command-R/cohere | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/cohere) |
| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2) |
| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/minicpm) |
## Get Support
- Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues)

View file

@ -618,6 +618,13 @@ Verified Models
<td>
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2">link</a></td>
</tr>
<tr>
<td>MiniCPM</td>
<td>
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm">link</a></td>
<td>
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/minicpm">link</a></td>
</tr>
</tbody>
</table>

View file

@ -0,0 +1,71 @@
# MiniCPM
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM models. For illustration purposes, we utilize the [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) as a reference MiniCPM model.
## 0. Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
On Linux:
```bash
conda create -n llm python=3.11
conda activate llm
# install ipex-llm with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
```
On Windows:
```cmd
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
```
### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM model (e.g. `openbmb/MiniCPM-2B-sft-bf16`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-2B-sft-bf16'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the MiniCPM model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```cmd
python ./generate.py
```
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set IPEX-LLM env variables
source ipex-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py
```
#### 2.3 Sample Output
#### [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<用户>what is AI?<AI>
-------------------- Output --------------------
<s> <用户>what is AI?<AI> AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It is a broad field of computer
```

View file

@ -0,0 +1,72 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-2B-sft-bf16",
help='The huggingface repo id for the MiniCPM model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
# here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16/blob/79fbb1db171e6d8bf77cdb0a94076a43003abd9e/modeling_minicpm.py#L1320
chat = [
{ "role": "user", "content": args.prompt },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# start inference
st = time.time()
output = model.generate(input_ids,
do_sample=False,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)

View file

@ -76,6 +76,7 @@ In the example, several arguments can be passed to satisfy your requirements:
#### 2.4 Sample Output
#### [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|user|>
What is AI?<|end|>

View file

@ -66,7 +66,7 @@ In the example, several arguments can be passed to satisfy your requirements:
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### 2.3 Sample Output
#### 2.4 Sample Output
#### [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
```log
Inference time: xxxx s
@ -84,4 +84,4 @@ What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that would typically require human intelligence, such as:
1. Learning: AI
```
```

View file

@ -0,0 +1,74 @@
# MiniCPM
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate MiniCPM models. For illustration purposes, we utilize the [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) as a reference MiniCPM model.
## Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://conda-forge.org/download/).
After installing conda, create a Python environment for IPEX-LLM:
On Linux:
```bash
conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm
# install the latest ipex-llm nightly build with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
```
On Windows:
```cmd
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
```
### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM model (e.g. `openbmb/MiniCPM-2B-sft-bf16`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-2B-sft-bf16'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the MiniCPM model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
```cmd
python ./generate.py --prompt 'What is AI?'
```
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set IPEX-LLM env variables
source ipex-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
```
#### 2.3 Sample Output
#### [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<用户>what is AI?<AI>
-------------------- Output --------------------
<s> <用户>what is AI?<AI> AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It is a broad field of computer
```

View file

@ -0,0 +1,74 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM
from ipex_llm import optimize_model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-2B-sft-bf16",
help='The huggingface repo id for the MiniCPM model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype='auto',
low_cpu_mem_usage=True,
use_cache=True)
# With only one line to enable IPEX-LLM optimization on model
model = optimize_model(model)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
# here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16/blob/79fbb1db171e6d8bf77cdb0a94076a43003abd9e/modeling_minicpm.py#L1320
chat = [
{ "role": "user", "content": args.prompt },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# start inference
st = time.time()
output = model.generate(input_ids,
do_sample=False,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)

View file

@ -73,6 +73,7 @@ In the example, several arguments can be passed to satisfy your requirements:
#### 2.4 Sample Output
#### [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|user|>
What is AI?<|end|>

View file

@ -0,0 +1,123 @@
# MiniCPM
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) as a reference MiniCPM model.
## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
### 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
</details>
<details>
<summary>For Intel Data Center GPU Max Series</summary>
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>
<summary>For Intel iGPU</summary>
```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```
</details>
#### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
</details>
<details>
<summary>For Intel Arc™ A-Series Graphics</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
```
</details>
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
```
python ./generate.py --prompt 'What is AI?'
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM model (e.g. `openbmb/MiniCPM-2B-sft-bf16`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-2B-sft-bf16'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<用户>what is AI?<AI>
-------------------- Output --------------------
<s> <用户>what is AI?<AI> AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It is a field of computer science
```

View file

@ -0,0 +1,80 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-2B-sft-bf16",
help='The huggingface repo id for the MiniCPM model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
optimize_model=True,
use_cache=True)
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
# here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16/blob/79fbb1db171e6d8bf77cdb0a94076a43003abd9e/modeling_minicpm.py#L1320
chat = [
{ "role": "user", "content": args.prompt },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex_llm model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
output = model.generate(input_ids,
do_sample=False,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)

View file

@ -0,0 +1,123 @@
# MiniCPM
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate MiniCPM models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) as a reference MiniCPM model.
## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
### 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
</details>
<details>
<summary>For Intel Data Center GPU Max Series</summary>
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>
<summary>For Intel iGPU</summary>
```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```
</details>
#### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
</details>
<details>
<summary>For Intel Arc™ A-Series Graphics</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
```
</details>
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
```
python ./generate.py --prompt 'What is AI?'
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM model (e.g. `openbmb/MiniCPM-2B-sft-bf16`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-2B-sft-bf16'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<用户>what is AI?<AI>
-------------------- Output --------------------
<s> <用户>what is AI?<AI> AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It is a field of computer science
```

View file

@ -0,0 +1,81 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from ipex_llm import optimize_model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-2B-sft-bf16",
help='The huggingface repo id for the MiniCPM model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype='auto',
low_cpu_mem_usage=True,
use_cache=True)
# With only one line to enable IPEX-LLM optimization on model
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = optimize_model(model)
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
# here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16/blob/79fbb1db171e6d8bf77cdb0a94076a43003abd9e/modeling_minicpm.py#L1320
chat = [
{ "role": "user", "content": args.prompt },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex_llm model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
output = model.generate(input_ids,
do_sample=False,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)