* Add migrate without code change. * Add SGX/TDX design guide. * Refine link & add description.
537 lines
17 KiB
Markdown
537 lines
17 KiB
Markdown
# Develop your own Big Data & AI applications with BigDL PPML
|
|
|
|
### 0. Understand E2E Security with PPML
|
|
|
|
Basic design guidelines for PPML applications are as follows:
|
|
|
|
* Data in use/computation should be protected by SGX.
|
|
* Data in transmit/network should be protected by encryption or TLS.
|
|
* Data at rest/storage should be protected by encryption.
|
|
|
|
This design ensures plain text data only be used in SGX, while in all others stages data is fully encrypted.
|
|
|
|

|
|
|
|
To our knowledge, most existing big data frameworks or systems have already provided network or storage protection. You can find more details in [Secure Your Services](https://bigdl.readthedocs.io/en/latest/doc/PPML/QuickStart/secure_your_services.html).
|
|
|
|
Please check with your admin or security department for security features and services available. We recommend building PPML applications based on the following conditions:
|
|
|
|
1. If you have network and storage protection enabled, and you want to secure computation with SGX. Then you can directly migrate your application into SGX with BigDL PPML. Please jump to [Migrate existing applications with BigDL PPML](#1-migrate-existing-applications-with-bigdl-ppml).
|
|
2. If you don't have any security features enabled, especially storage protection. Then you can use PPMLContext and recommended KMS. Please jump to [Enhance your applications with PPMLContext](#2-enhance-your-applications-with-ppmlcontext).
|
|
|
|
### 1. Migrate existing applications with BigDL PPML
|
|
|
|
This working model doesn't require any code change. You can reuse existing code and applications. The only difference is that your cluster manager/admin needs to set up a new execution environment for PPML applications.
|
|
|
|
You can find more details in these articles:
|
|
|
|
* [Installation for PPML](https://bigdl.readthedocs.io/en/latest/doc/PPML/Overview/install.html).
|
|
* [Hello World Example](https://bigdl.readthedocs.io/en/latest/doc/PPML/Overview/quicktour.html).
|
|
* [Deployment for production](https://bigdl.readthedocs.io/en/latest/doc/PPML/QuickStart/deploy_ppml_in_production.html).
|
|
|
|
### 2. Enhance your applications with PPMLContext
|
|
|
|
In this section, we will introduce how to secure your applications with `PPMLContext`. It requires a few code changes and configurations for your applications.
|
|
|
|
First, you need to create a `PPMLContext`, which wraps `SparkSession` and provides methods to read encrypted data files into plain-text RDD/DataFrame and write DataFrame to encrypted data files. Then you can read & write data through `PPMLContext`.
|
|
|
|
If you are familiar with Spark, you may find that the usage of `PPMLContext` is very similar to Spark.
|
|
|
|
#### 2.1 Create PPMLContext
|
|
|
|
- create a PPMLContext with `appName`
|
|
|
|
This is the simplest way to create a `PPMLContext`. When you don't need to read/write encrypted files, you can use this way to create a `PPMLContext`.
|
|
|
|
<details open>
|
|
<summary>scala</summary>
|
|
|
|
```scala
|
|
import com.intel.analytics.bigdl.ppml.PPMLContext
|
|
|
|
val sc = PPMLContext.initPPMLContext("MyApp")
|
|
```
|
|
|
|
</details>
|
|
|
|
<details>
|
|
<summary>python</summary>
|
|
|
|
```python
|
|
from bigdl.ppml.ppml_context import *
|
|
|
|
sc = PPMLContext("MyApp")
|
|
```
|
|
|
|
</details>
|
|
|
|
If you want to read/write encrypted files, then you need to provide more information.
|
|
|
|
- create a PPMLContext with `appName` & `ppmlArgs`
|
|
|
|
`ppmlArgs` is ppml arguments in a Map, `ppmlArgs` varies according to the kind of Key Management Service (KMS) you are using. Key Management Service (KMS) is used to generate `primaryKey` and `dataKey` to encrypt/decrypt data. We provide 3 types of KMS ——SimpleKeyManagementService, EHSMKeyManagementService, AzureKeyManagementService.
|
|
|
|
Refer to [KMS Utils](https://github.com/intel-analytics/BigDL/blob/main/ppml/services/kms-utils/docker/README.md) to use KMS to generate `primaryKey` and `dataKey`, then you are ready to create **PPMLContext** with `ppmlArgs`.
|
|
|
|
- For `SimpleKeyManagementService`:
|
|
|
|
<details open>
|
|
<summary>scala</summary>
|
|
|
|
```scala
|
|
import com.intel.analytics.bigdl.ppml.PPMLContext
|
|
|
|
val ppmlArgs: Map[String, String] = Map(
|
|
"spark.bigdl.kms.type" -> "SimpleKeyManagementService",
|
|
"spark.bigdl.kms.simple.id" -> "your_app_id",
|
|
"spark.bigdl.kms.simple.key" -> "your_app_key",
|
|
"spark.bigdl.kms.key.primary" -> "/your/primary/key/path/primaryKey",
|
|
"spark.bigdl.kms.key.data" -> "/your/data/key/path/dataKey"
|
|
)
|
|
|
|
val sc = PPMLContext.initPPMLContext("MyApp", ppmlArgs)
|
|
```
|
|
|
|
</details>
|
|
|
|
|
|
<details>
|
|
<summary>python</summary>
|
|
|
|
```python
|
|
from bigdl.ppml.ppml_context import *
|
|
|
|
ppml_args = {"kms_type": "SimpleKeyManagementService",
|
|
"simple_app_id": "your_app_id",
|
|
"simple_app_key": "your_app_key",
|
|
"primary_key_path": "/your/primary/key/path/primaryKey",
|
|
"data_key_path": "/your/data/key/path/dataKey"
|
|
}
|
|
|
|
sc = PPMLContext("MyApp", ppml_args)
|
|
```
|
|
|
|
</details>
|
|
|
|
- For `EHSMKeyManagementService`:
|
|
|
|
<details open>
|
|
<summary>scala</summary>
|
|
|
|
```scala
|
|
import com.intel.analytics.bigdl.ppml.PPMLContext
|
|
|
|
val ppmlArgs: Map[String, String] = Map(
|
|
"spark.bigdl.kms.type" -> "EHSMKeyManagementService",
|
|
"spark.bigdl.kms.ehs.ip" -> "your_server_ip",
|
|
"spark.bigdl.kms.ehs.port" -> "your_server_port",
|
|
"spark.bigdl.kms.ehs.id" -> "your_app_id",
|
|
"spark.bigdl.kms.ehs.key" -> "your_app_key",
|
|
"spark.bigdl.kms.key.primary" -> "/your/primary/key/path/primaryKey",
|
|
"spark.bigdl.kms.key.data" -> "/your/data/key/path/dataKey"
|
|
)
|
|
|
|
val sc = PPMLContext.initPPMLContext("MyApp", ppmlArgs)
|
|
```
|
|
|
|
</details>
|
|
|
|
<details>
|
|
<summary>python</summary>
|
|
|
|
```python
|
|
from bigdl.ppml.ppml_context import *
|
|
|
|
ppml_args = {"kms_type": "EHSMKeyManagementService",
|
|
"kms_server_ip": "your_server_ip",
|
|
"kms_server_port": "your_server_port"
|
|
"ehsm_app_id": "your_app_id",
|
|
"ehsm_app_key": "your_app_key",
|
|
"primary_key_path": "/your/primary/key/path/primaryKey",
|
|
"data_key_path": "/your/data/key/path/dataKey"
|
|
}
|
|
|
|
sc = PPMLContext("MyApp", ppml_args)
|
|
```
|
|
|
|
</details>
|
|
|
|
- For `AzureKeyManagementService`
|
|
|
|
|
|
the parameter `clientId` is not necessary, you don't have to provide this parameter.
|
|
|
|
<details open>
|
|
<summary>scala</summary>
|
|
|
|
```scala
|
|
import com.intel.analytics.bigdl.ppml.PPMLContext
|
|
|
|
val ppmlArgs: Map[String, String] = Map(
|
|
"spark.bigdl.kms.type" -> "AzureKeyManagementService",
|
|
"spark.bigdl.kms.azure.vault" -> "key_vault_name",
|
|
"spark.bigdl.kms.azure.clientId" -> "client_id",
|
|
"spark.bigdl.kms.key.primary" -> "/your/primary/key/path/primaryKey",
|
|
"spark.bigdl.kms.key.data" -> "/your/data/key/path/dataKey"
|
|
)
|
|
|
|
val sc = PPMLContext.initPPMLContext("MyApp", ppmlArgs)
|
|
```
|
|
|
|
</details>
|
|
|
|
<details>
|
|
<summary>python</summary>
|
|
|
|
```python
|
|
from bigdl.ppml.ppml_context import *
|
|
|
|
ppml_args = {"kms_type": "AzureKeyManagementService",
|
|
"azure_vault": "your_azure_vault",
|
|
"azure_client_id": "your_azure_client_id",
|
|
"primary_key_path": "/your/primary/key/path/primaryKey",
|
|
"data_key_path": "/your/data/key/path/dataKey"
|
|
}
|
|
|
|
sc = PPMLContext("MyApp", ppml_args)
|
|
```
|
|
|
|
</details>
|
|
|
|
- create a PPMLContext with `sparkConf` & `appName` & `ppmlArgs`
|
|
|
|
If you need to set Spark configurations, you can provide a `SparkConf` with Spark configurations to create a `PPMLContext`.
|
|
|
|
<details open>
|
|
<summary>scala</summary>
|
|
|
|
```scala
|
|
import com.intel.analytics.bigdl.ppml.PPMLContext
|
|
import org.apache.spark.SparkConf
|
|
|
|
val ppmlArgs: Map[String, String] = Map(
|
|
"spark.bigdl.kms.type" -> "SimpleKeyManagementService",
|
|
"spark.bigdl.kms.simple.id" -> "your_app_id",
|
|
"spark.bigdl.kms.simple.key" -> "your_app_key",
|
|
"spark.bigdl.kms.key.primary" -> "/your/primary/key/path/primaryKey",
|
|
"spark.bigdl.kms.key.data" -> "/your/data/key/path/dataKey"
|
|
)
|
|
|
|
val conf: SparkConf = new SparkConf().setMaster("local[4]")
|
|
|
|
val sc = PPMLContext.initPPMLContext(conf, "MyApp", ppmlArgs)
|
|
```
|
|
|
|
</details>
|
|
|
|
<details>
|
|
<summary>python</summary>
|
|
|
|
```python
|
|
from bigdl.ppml.ppml_context import *
|
|
from pyspark import SparkConf
|
|
|
|
ppml_args = {"kms_type": "SimpleKeyManagementService",
|
|
"simple_app_id": "your_app_id",
|
|
"simple_app_key": "your_app_key",
|
|
"primary_key_path": "/your/primary/key/path/primaryKey",
|
|
"data_key_path": "/your/data/key/path/dataKey"
|
|
}
|
|
|
|
conf = SparkConf()
|
|
conf.setMaster("local[4]")
|
|
|
|
sc = PPMLContext("MyApp", ppml_args, conf)
|
|
```
|
|
|
|
</details>
|
|
|
|
#### 2.2 Read and Write Files
|
|
|
|
To read/write data, you should set the `CryptoMode`:
|
|
|
|
- `plain_text`: no encryption
|
|
- `AES/CBC/PKCS5Padding`: for CSV, JSON and text file
|
|
- `AES_GCM_V1`: for PARQUET only
|
|
- `AES_GCM_CTR_V1`: for PARQUET only
|
|
|
|
To write data, you should set the `write` mode:
|
|
|
|
- `overwrite`: Overwrite existing data with the content of dataframe.
|
|
- `append`: Append new content of the dataframe to existing data or table.
|
|
- `ignore: Ignore the current write operation if data/table already exists without any error.
|
|
- `error`: Throw an exception if data or table already exists.
|
|
- `errorifexists`: Throw an exception if data or table already exists.
|
|
|
|
<details open>
|
|
<summary>scala</summary>
|
|
|
|
```scala
|
|
import com.intel.analytics.bigdl.ppml.crypto.{AES_CBC_PKCS5PADDING, PLAIN_TEXT}
|
|
|
|
// read data
|
|
val df = sc.read(cryptoMode = PLAIN_TEXT)
|
|
...
|
|
|
|
// write data
|
|
sc.write(dataFrame = df, cryptoMode = AES_CBC_PKCS5PADDING)
|
|
.mode("overwrite")
|
|
...
|
|
```
|
|
|
|
</details>
|
|
|
|
<details>
|
|
<summary>python</summary>
|
|
|
|
```python
|
|
from bigdl.ppml.ppml_context import *
|
|
|
|
# read data
|
|
df = sc.read(crypto_mode = CryptoMode.PLAIN_TEXT)
|
|
...
|
|
|
|
# write data
|
|
sc.write(dataframe = df, crypto_mode = CryptoMode.AES_CBC_PKCS5PADDING)
|
|
.mode("overwrite")
|
|
...
|
|
```
|
|
|
|
</details>
|
|
|
|
<details><summary>expand to see the examples of reading/writing CSV, PARQUET, JSON and text file</summary>
|
|
|
|
The following examples use `sc` to represent an initialized `PPMLContext`
|
|
|
|
**read/write CSV file**
|
|
|
|
<details open>
|
|
<summary>scala</summary>
|
|
|
|
```scala
|
|
import com.intel.analytics.bigdl.ppml.PPMLContext
|
|
import com.intel.analytics.bigdl.ppml.crypto.{AES_CBC_PKCS5PADDING, PLAIN_TEXT}
|
|
|
|
// read a plain csv file and return a DataFrame
|
|
val plainCsvPath = "/plain/csv/path"
|
|
val df1 = sc.read(cryptoMode = PLAIN_TEXT).option("header", "true").csv(plainCsvPath)
|
|
|
|
// write a DataFrame as a plain csv file
|
|
val plainOutputPath = "/plain/output/path"
|
|
sc.write(df1, PLAIN_TEXT)
|
|
.mode("overwrite")
|
|
.option("header", "true")
|
|
.csv(plainOutputPath)
|
|
|
|
// read a encrypted csv file and return a DataFrame
|
|
val encryptedCsvPath = "/encrypted/csv/path"
|
|
val df2 = sc.read(cryptoMode = AES_CBC_PKCS5PADDING).option("header", "true").csv(encryptedCsvPath)
|
|
|
|
// write a DataFrame as a encrypted csv file
|
|
val encryptedOutputPath = "/encrypted/output/path"
|
|
sc.write(df2, AES_CBC_PKCS5PADDING)
|
|
.mode("overwrite")
|
|
.option("header", "true")
|
|
.csv(encryptedOutputPath)
|
|
```
|
|
|
|
</details>
|
|
|
|
<details>
|
|
<summary>python</summary>
|
|
|
|
```python
|
|
# import
|
|
from bigdl.ppml.ppml_context import *
|
|
|
|
# read a plain csv file and return a DataFrame
|
|
plain_csv_path = "/plain/csv/path"
|
|
df1 = sc.read(CryptoMode.PLAIN_TEXT).option("header", "true").csv(plain_csv_path)
|
|
|
|
# write a DataFrame as a plain csv file
|
|
plain_output_path = "/plain/output/path"
|
|
sc.write(df1, CryptoMode.PLAIN_TEXT)
|
|
.mode('overwrite')
|
|
.option("header", True)
|
|
.csv(plain_output_path)
|
|
|
|
# read a encrypted csv file and return a DataFrame
|
|
encrypted_csv_path = "/encrypted/csv/path"
|
|
df2 = sc.read(CryptoMode.AES_CBC_PKCS5PADDING).option("header", "true").csv(encrypted_csv_path)
|
|
|
|
# write a DataFrame as a encrypted csv file
|
|
encrypted_output_path = "/encrypted/output/path"
|
|
sc.write(df2, CryptoMode.AES_CBC_PKCS5PADDING)
|
|
.mode('overwrite')
|
|
.option("header", True)
|
|
.csv(encrypted_output_path)
|
|
```
|
|
|
|
</details>
|
|
|
|
**read/write PARQUET file**
|
|
|
|
<details open>
|
|
<summary>scala</summary>
|
|
|
|
```scala
|
|
import com.intel.analytics.bigdl.ppml.PPMLContext
|
|
import com.intel.analytics.bigdl.ppml.crypto.{AES_GCM_CTR_V1, PLAIN_TEXT}
|
|
|
|
// read a plain parquet file and return a DataFrame
|
|
val plainParquetPath = "/plain/parquet/path"
|
|
val df1 = sc.read(PLAIN_TEXT).parquet(plainParquetPath)
|
|
|
|
// write a DataFrame as a plain parquet file
|
|
plainOutputPath = "/plain/output/path"
|
|
sc.write(df1, PLAIN_TEXT)
|
|
.mode("overwrite")
|
|
.parquet(plainOutputPath)
|
|
|
|
// read a encrypted parquet file and return a DataFrame
|
|
val encryptedParquetPath = "/encrypted/parquet/path"
|
|
val df2 = sc.read(AES_GCM_CTR_V1).parquet(encryptedParquetPath)
|
|
|
|
// write a DataFrame as a encrypted parquet file
|
|
val encryptedOutputPath = "/encrypted/output/path"
|
|
sc.write(df2, AES_GCM_CTR_V1)
|
|
.mode("overwrite")
|
|
.parquet(encryptedOutputPath)
|
|
```
|
|
|
|
</details>
|
|
|
|
|
|
<details>
|
|
<summary>python</summary>
|
|
|
|
```python
|
|
# import
|
|
from bigdl.ppml.ppml_context import *
|
|
|
|
# read a plain parquet file and return a DataFrame
|
|
plain_parquet_path = "/plain/parquet/path"
|
|
df1 = sc.read(CryptoMode.PLAIN_TEXT).parquet(plain_parquet_path)
|
|
|
|
# write a DataFrame as a plain parquet file
|
|
plain_output_path = "/plain/output/path"
|
|
sc.write(df1, CryptoMode.PLAIN_TEXT)
|
|
.mode('overwrite')
|
|
.parquet(plain_output_path)
|
|
|
|
# read a encrypted parquet file and return a DataFrame
|
|
encrypted_parquet_path = "/encrypted/parquet/path"
|
|
df2 = sc.read(CryptoMode.AES_GCM_CTR_V1).parquet(encrypted_parquet_path)
|
|
|
|
# write a DataFrame as a encrypted parquet file
|
|
encrypted_output_path = "/encrypted/output/path"
|
|
sc.write(df2, CryptoMode.AES_GCM_CTR_V1)
|
|
.mode('overwrite')
|
|
.parquet(encrypted_output_path)
|
|
```
|
|
|
|
</details>
|
|
|
|
**read/write JSON file**
|
|
|
|
<details open>
|
|
<summary>scala</summary>
|
|
|
|
```scala
|
|
import com.intel.analytics.bigdl.ppml.PPMLContext
|
|
import com.intel.analytics.bigdl.ppml.crypto.{AES_CBC_PKCS5PADDING, PLAIN_TEXT}
|
|
|
|
// read a plain json file and return a DataFrame
|
|
val plainJsonPath = "/plain/json/path"
|
|
val df1 = sc.read(PLAIN_TEXT).json(plainJsonPath)
|
|
|
|
// write a DataFrame as a plain json file
|
|
val plainOutputPath = "/plain/output/path"
|
|
sc.write(df1, PLAIN_TEXT)
|
|
.mode("overwrite")
|
|
.json(plainOutputPath)
|
|
|
|
// read a encrypted json file and return a DataFrame
|
|
val encryptedJsonPath = "/encrypted/parquet/path"
|
|
val df2 = sc.read(AES_CBC_PKCS5PADDING).json(encryptedJsonPath)
|
|
|
|
// write a DataFrame as a encrypted parquet file
|
|
val encryptedOutputPath = "/encrypted/output/path"
|
|
sc.write(df2, AES_CBC_PKCS5PADDING)
|
|
.mode("overwrite")
|
|
.json(encryptedOutputPath)
|
|
```
|
|
|
|
</details>
|
|
|
|
<details>
|
|
<summary>python</summary>
|
|
|
|
```python
|
|
# import
|
|
from bigdl.ppml.ppml_context import *
|
|
|
|
# read a plain json file and return a DataFrame
|
|
plain_json_path = "/plain/json/path"
|
|
df1 = sc.read(CryptoMode.PLAIN_TEXT).json(plain_json_path)
|
|
|
|
# write a DataFrame as a plain json file
|
|
plain_output_path = "/plain/output/path"
|
|
sc.write(df1, CryptoMode.PLAIN_TEXT)
|
|
.mode('overwrite')
|
|
.json(plain_output_path)
|
|
|
|
# read a encrypted json file and return a DataFrame
|
|
encrypted_json_path = "/encrypted/parquet/path"
|
|
df2 = sc.read(CryptoMode.AES_CBC_PKCS5PADDING).json(encrypted_json_path)
|
|
|
|
# write a DataFrame as a encrypted parquet file
|
|
encrypted_output_path = "/encrypted/output/path"
|
|
sc.write(df2, CryptoMode.AES_CBC_PKCS5PADDING)
|
|
.mode('overwrite')
|
|
.json(encrypted_output_path)
|
|
```
|
|
|
|
</details>
|
|
|
|
**read textfile**
|
|
|
|
<details open>
|
|
<summary>scala</summary>
|
|
|
|
```scala
|
|
import com.intel.analytics.bigdl.ppml.PPMLContext
|
|
import com.intel.analytics.bigdl.ppml.crypto.{AES_CBC_PKCS5PADDING, PLAIN_TEXT}
|
|
|
|
// read from a plain csv file and return a RDD
|
|
val plainCsvPath = "/plain/csv/path"
|
|
val rdd1 = sc.textfile(plainCsvPath) // the default cryptoMode is PLAIN_TEXT
|
|
|
|
// read from a encrypted csv file and return a RDD
|
|
val encryptedCsvPath = "/encrypted/csv/path"
|
|
val rdd2 = sc.textfile(path=encryptedCsvPath, cryptoMode=AES_CBC_PKCS5PADDING)
|
|
```
|
|
|
|
</details>
|
|
|
|
<details>
|
|
<summary>python</summary>
|
|
|
|
```python
|
|
# import
|
|
from bigdl.ppml.ppml_context import *
|
|
|
|
# read from a plain csv file and return a RDD
|
|
plain_csv_path = "/plain/csv/path"
|
|
rdd1 = sc.textfile(plain_csv_path) # the default crypto_mode is "plain_text"
|
|
|
|
# read from a encrypted csv file and return a RDD
|
|
encrypted_csv_path = "/encrypted/csv/path"
|
|
rdd2 = sc.textfile(path=encrypted_csv_path, crypto_mode=CryptoMode.AES_CBC_PKCS5PADDING)
|
|
```
|
|
|
|
</details>
|
|
|
|
</details>
|
|
|
|
For more usage with `PPMLContext` Python API, please refer to [PPMLContext Python API](https://github.com/intel-analytics/BigDL/blob/main/python/ppml/src/bigdl/ppml/README.md).
|