80 lines
4.2 KiB
Markdown
80 lines
4.2 KiB
Markdown
# QA-LoRA Finetuning with IPEX-LLM
|
|
|
|
This example ports [Alpaca-LoRA](https://github.com/tloen/alpaca-lora/tree/main) to IPEX-LLM (using [QA-LoRA](https://arxiv.org/abs/2309.14717) algorithm) on [Intel GPU](../../README.md).
|
|
|
|
### 0. Requirements
|
|
To run this example with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../README.md#requirements) for more information.
|
|
|
|
### 1. Install
|
|
|
|
```bash
|
|
conda create -n llm python=3.11
|
|
conda activate llm
|
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
|
pip install transformers==4.34.0 datasets
|
|
pip install fire peft==0.5.0
|
|
pip install oneccl_bind_pt==2.1.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ # necessary to run distributed finetuning
|
|
pip install accelerate==0.23.0
|
|
pip install bitsandbytes scipy
|
|
```
|
|
|
|
### 2. Configures OneAPI environment variables
|
|
```bash
|
|
source /opt/intel/oneapi/setvars.sh
|
|
```
|
|
|
|
### 3. QA-LoRA Finetune
|
|
|
|
Here, we provide example usages on different hardware. Please refer to the appropriate script based on your device:
|
|
|
|
##### Finetuning LLaMA2-7B on single Arc A770
|
|
|
|
```bash
|
|
bash qalora_finetune_llama2_7b_arc_1_card.sh
|
|
```
|
|
|
|
##### Finetuning LLaMA2-7B on two Arc A770
|
|
|
|
```bash
|
|
bash qalora_finetune_llama2_7b_arc_2_card.sh
|
|
```
|
|
|
|
##### Finetuning LLaMA2-7B on single tile of Intel Data Center GPU Max 1550
|
|
|
|
```bash
|
|
bash qalora_finetune_llama2_7b_pvc_1550_1_tile.sh
|
|
```
|
|
|
|
### 4. (Optional) Resume Training
|
|
**If you fail to complete the whole finetuning process, it is suggested to resume training from a previously saved checkpoint by specifying `resume_from_checkpoint` to the local checkpoint folder as following:**
|
|
```bash
|
|
python ./alpaca_qalora_finetuning.py \
|
|
--base_model "meta-llama/Llama-2-7b-hf" \
|
|
--data_path "yahma/alpaca-cleaned" \
|
|
--output_dir "./ipex-llm-qlora-alpaca" \
|
|
--resume_from_checkpoint "./ipex-llm-qlora-alpaca/checkpoint-1100"
|
|
```
|
|
|
|
### 5. Sample Output
|
|
```log
|
|
{'loss': 1.9231, 'learning_rate': 2.9999945367033285e-05, 'epoch': 0.0}
|
|
{'loss': 1.8622, 'learning_rate': 2.9999781468531096e-05, 'epoch': 0.01}
|
|
{'loss': 1.9043, 'learning_rate': 2.9999508305687345e-05, 'epoch': 0.01}
|
|
{'loss': 1.8967, 'learning_rate': 2.999912588049185e-05, 'epoch': 0.01}
|
|
{'loss': 1.9658, 'learning_rate': 2.9998634195730358e-05, 'epoch': 0.01}
|
|
{'loss': 1.8386, 'learning_rate': 2.9998033254984483e-05, 'epoch': 0.02}
|
|
{'loss': 1.809, 'learning_rate': 2.999732306263172e-05, 'epoch': 0.02}
|
|
{'loss': 1.8552, 'learning_rate': 2.9996503623845395e-05, 'epoch': 0.02}
|
|
1%|█ | 8/1164 [xx:xx<xx:xx:xx, xx s/it]
|
|
```
|
|
|
|
### 6. Merge the adapter into the original model
|
|
```
|
|
python ./export_merged_model.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --adapter_path ./outputs/checkpoint-200 --output_path ./outputs/checkpoint-200-merged
|
|
```
|
|
|
|
Then you can use `./outputs/checkpoint-200-merged` as a normal huggingface transformer model to do inference.
|
|
|
|
### 7. Troubleshooting
|
|
Please refer to [here](../README.md#troubleshooting) for solutions of common issues during finetuning.
|