ipex-llm/docs/readthedocs/source/doc/Orca/Overview/install.md
Kai Huang ea164651ee Polish Orca Doc (#6266)
* fix doc

* add tutorial index

* remove

* fix

* remove

* update
2022-10-24 18:03:39 +08:00

51 lines
1.8 KiB
Markdown

# Installation
## To use basic Orca features
We recommend using [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) to prepare the Python environment.
```bash
conda create -n py37 python=3.7 # "py37" is conda environment name, you can use any name you like.
conda activate py37
pip install bigdl-orca
```
You can install bigdl-orca nightly build version using
```bash
pip install --pre --upgrade bigdl-orca
```
## To additionally use RayOnSpark
If you wish to run [RayOnSpark](ray.md) or [sklearn-style Estimator APIs in Orca](distributed-training-inference.md) with "ray" backend, use the extra key `[ray]` during the installation above:
```bash
pip install bigdl-orca[ray]
```
or for the nightly build version, use
```bash
pip install --pre --upgrade bigdl-orca[ray]
```
Note that with the extra key of [ray], `pip` will automatically install the additional dependencies for RayOnSpark,
including `ray[default]==1.9.2`, `aiohttp==3.8.1`, `async-timeout==4.0.1`, `aioredis==1.3.1`, `hiredis==2.0.0`, `prometheus-client==0.11.0`, `psutil`, `setproctitle`.
## To additionally use AutoML
If you wish to run AutoML, use the extra key `[automl]` during the installation above:
```bash
pip install bigdl-orca[automl]
````
or for the nightly build version, use
```bash
pip install --pre --upgrade bigdl-orca[automl]
```
Note that with the extra key of [automl], `pip` will automatically install the additional dependencies for distributed hyper-parameter tuning,
including `ray[tune]==1.9.2`, `scikit-learn`, `tensorboard`, `xgboost` together with the dependencies given by the extra key [ray].
- To use [Pytorch Estimator](#pytorch-autoestimator), you need to install Pytorch with `pip install torch==1.8.1`.
- To use [TensorFlow/Keras AutoEstimator](#tensorflow-keras-autoestimator), you need to install TensorFlow with `pip install tensorflow==1.15.0`.