63 lines
3.2 KiB
Markdown
63 lines
3.2 KiB
Markdown
# StarCoder
|
|
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on StarCoder models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) as a reference StarCoder model.
|
|
|
|
## 0. Requirements
|
|
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
|
|
|
## Example: Predict Tokens using `generate()` API
|
|
In the example [generate.py](./generate.py), we show a basic use case for an StarCoder model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
|
|
### 1. Install
|
|
We suggest using conda to manage environment:
|
|
```bash
|
|
conda create -n llm python=3.9
|
|
conda activate llm
|
|
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
|
# you can install specific ipex/torch version for your need
|
|
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
|
```
|
|
|
|
### 2. Configures OneAPI environment variables
|
|
```bash
|
|
source /opt/intel/oneapi/setvars.sh
|
|
```
|
|
|
|
### 3. Run
|
|
|
|
For optimal performance on Arc, it is recommended to set several environment variables.
|
|
|
|
```bash
|
|
export USE_XETLA=OFF
|
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
|
```
|
|
|
|
```
|
|
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
|
```
|
|
|
|
Arguments info:
|
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the StarCoder model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'bigcode/starcoder'`.
|
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'def print_hello_world():'`.
|
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
|
|
|
#### Sample Output
|
|
#### [bigcode/starcoder](https://huggingface.co/bigcode/starcoder)
|
|
```log
|
|
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [02:07<00:00, 18.23s/it]
|
|
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
|
|
Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.
|
|
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
|
|
Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.
|
|
Inference time: xxxx s
|
|
-------------------- Prompt --------------------
|
|
def print_hello_world():
|
|
-------------------- Output --------------------
|
|
def print_hello_world():
|
|
print("Hello World!")
|
|
|
|
|
|
def print_hello_name(name):
|
|
print(f"Hello {name}!")
|
|
|
|
|
|
def print_
|
|
```
|