ipex-llm/docs/mddocs/Overview/KeyFeatures/native_format.md
2024-06-20 13:47:49 +08:00

32 lines
No EOL
1.2 KiB
Markdown

# Native Format
You may also convert Hugging Face *Transformers* models into native INT4 format for maximum performance as follows.
```eval_rst
.. note::
Currently only llama/bloom/gptneox/starcoder/chatglm model families are supported; you may use the corresponding API to load the converted model. (For other models, you can use the Hugging Face ``transformers`` format as described `here <./hugging_face_format.html>`_).
```
```python
# convert the model
from ipex_llm import llm_convert
ipex_llm_path = llm_convert(model='/path/to/model/',
outfile='/path/to/output/', outtype='int4', model_family="llama")
# load the converted model
# switch to ChatGLMForCausalLM/GptneoxForCausalLM/BloomForCausalLM/StarcoderForCausalLM to load other models
from ipex_llm.transformers import LlamaForCausalLM
llm = LlamaForCausalLM.from_pretrained("/path/to/output/model.bin", native=True, ...)
# run the converted model
input_ids = llm.tokenize(prompt)
output_ids = llm.generate(input_ids, ...)
output = llm.batch_decode(output_ids)
```
```eval_rst
.. seealso::
See the complete example `here <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Native-Models>`_
```