ipex-llm/python/llm/dev/benchmark/all-in-one
Zhao Changmin 15d906a97b
Update linux igpu run script (#11098)
* update run script
2024-05-22 17:18:07 +08:00
..
prompt Update 8192.txt (#10824) 2024-04-23 14:02:09 +08:00
config.yaml Quickstart: Run PyTorch Inference on Intel GPU using Docker (on Linux or WSL) (#10970) 2024-05-14 12:58:31 +08:00
README.md Modify all-in-one benchmark (#10726) 2024-04-11 13:38:50 +08:00
run-arc.sh LLM: Set different env based on different Linux kernels (#10566) 2024-03-27 17:56:33 +08:00
run-deepspeed-arc.sh Update environment variable setting in AutoTP with arc (#11018) 2024-05-15 10:23:58 +08:00
run-deepspeed-pvc.sh LLM: add benchmark script for deepspeed autotp on gpu (#10380) 2024-03-12 15:19:57 +08:00
run-deepspeed-spr.sh LLM: CPU benchmark using tcmalloc (#10675) 2024-04-07 14:17:01 +08:00
run-hbm.sh LLM: CPU benchmark using tcmalloc (#10675) 2024-04-07 14:17:01 +08:00
run-igpu.sh Update linux igpu run script (#11098) 2024-05-22 17:18:07 +08:00
run-max-gpu.sh LLM: Set different env based on different Linux kernels (#10566) 2024-03-27 17:56:33 +08:00
run-spr.sh LLM: CPU benchmark using tcmalloc (#10675) 2024-04-07 14:17:01 +08:00
run-stress-test.py Update benchmark util for example using (#11027) 2024-05-15 14:16:35 +08:00
run.py Update benchmark util for example using (#11027) 2024-05-15 14:16:35 +08:00
save.py Refactor bigdl.llm to ipex_llm (#24) 2024-03-22 15:41:21 +08:00

All in One Benchmark Test

All in one benchmark test allows users to test all the benchmarks and record them in a result CSV. Users can provide models and related information in config.yaml.

Before running, make sure to have ipex-llm installed.

Dependencies

pip install omegaconf
pip install pandas

Install gperftools to use libtcmalloc.so for MAX GPU to get better performance:

conda install -c conda-forge -y gperftools=2.10

Config

Config YAML file has following format

repo_id:
  # - 'THUDM/chatglm2-6b'
  - 'meta-llama/Llama-2-7b-chat-hf'
  # - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
num_beams: 1 # default to greedy search
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
batch_size: 1 # default to 1
in_out_pairs:
  - '32-32'
  - '1024-128'
test_api:
  - "transformer_int4_gpu"  # on Intel GPU
  # - "transformer_int4_fp16_gpu" # on Intel GPU, use fp16 for non-linear layer
  # - "ipex_fp16_gpu" # on Intel GPU
  # - "bigdl_fp16_gpu" # on Intel GPU
  # - "optimize_model_gpu"  # on Intel GPU
  # - "transformer_int4_gpu_win" # on Intel GPU for Windows
  # - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, use fp16 for non-linear layer
  # - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
  # - "deepspeed_optimize_model_gpu" # deepspeed autotp on Intel GPU
  # - "speculative_gpu"
  # - "transformer_int4"
  # - "native_int4"
  # - "optimize_model"
  # - "pytorch_autocast_bf16"
  # - "transformer_autocast_bf16"
  # - "bigdl_ipex_bf16"
  # - "bigdl_ipex_int4"
  # - "bigdl_ipex_int8"
  # - "speculative_cpu"
  # - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
cpu_embedding: False # whether put embedding to CPU
streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)


(Optional) Save model in low bit

If you choose the transformer_int4_loadlowbit_gpu_win test API, you will need to save the model in low bit first.

Run python save.py will save all models declared in repo_id list into low bit models under local_model_hub folder.

Run

run python run.py, this will output results to results.csv.

For SPR performance, run bash run-spr.sh.

Note

The value of OMP_NUM_THREADS should be the same as the cpu cores specified by numactl -C.

Note

Please install torch nightly version to avoid Illegal instruction (core dumped) issue, you can follow the following command to install: pip install --pre --upgrade torch --index-url https://download.pytorch.org/whl/nightly/cpu

For ARC performance, run bash run-arc.sh.

For MAX GPU performance, run bash run-max-gpu.sh.