Quickstart: Run PyTorch Inference on Intel GPU using Docker (on Linux or WSL) (#10970)
* add entrypoint.sh * add quickstart * remove entrypoint * update * Install related library of benchmarking * update * print out results * update docs * minor update * update * update quickstart * update * update * update * update * update * update * add chat & example section * add more details * minor update * rename quickstart * update * minor update * update * update config.yaml * update readme * use --gpu * add tips * minor update * update
This commit is contained in:
parent
a465111cf4
commit
7f8c5b410b
7 changed files with 331 additions and 42 deletions
|
|
@ -159,9 +159,12 @@ Run the following command to pull image from dockerhub:
|
|||
docker pull intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
|
||||
```
|
||||
|
||||
### 2. Start ipex-llm-xpu Docker Container
|
||||
### 2. Start Chat Inference
|
||||
|
||||
We provide `chat.py` for conversational AI. If your model is Llama-2-7b-chat-hf and mounted on /llm/models, you can execute the following command to initiate a conversation:
|
||||
|
||||
To map the xpu into the container, you need to specify --device=/dev/dri when booting the container.
|
||||
|
||||
```bash
|
||||
#/bin/bash
|
||||
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
|
||||
|
|
@ -175,35 +178,43 @@ sudo docker run -itd \
|
|||
--name=$CONTAINER_NAME \
|
||||
--shm-size="16g" \
|
||||
-v $MODEL_PATH:/llm/models \
|
||||
$DOCKER_IMAGE
|
||||
$DOCKER_IMAGE bash -c "python chat.py --model-path /llm/models/Llama-2-7b-chat-hf"
|
||||
```
|
||||
|
||||
Access the container:
|
||||
```
|
||||
docker exec -it $CONTAINER_NAME bash
|
||||
```
|
||||
|
||||
To verify the device is successfully mapped into the container, run `sycl-ls` to check the result. In a machine with Arc A770, the sampled output is:
|
||||
### 3. Quick Performance Benchmark
|
||||
|
||||
Execute a quick performance benchmark by starting the ipex-llm-xpu container, specifying the model, test API, and device, then running the benchmark.sh script.
|
||||
|
||||
To map the XPU into the container, specify `--device=/dev/dri` when booting the container.
|
||||
```bash
|
||||
root@arda-arc12:/# sycl-ls
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device 1.2 [2023.16.7.0.21_160000]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i9-13900K 3.0 [2023.16.7.0.21_160000]
|
||||
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics 3.0 [23.17.26241.33]
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26241]
|
||||
#/bin/bash
|
||||
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
|
||||
export CONTAINER_NAME=my_container
|
||||
export MODEL_PATH=/llm/models [change to your model path]
|
||||
|
||||
sudo docker run -itd \
|
||||
--net=host \
|
||||
--device=/dev/dri \
|
||||
--memory="32G" \
|
||||
--name=$CONTAINER_NAME \
|
||||
--shm-size="16g" \
|
||||
-v $MODEL_PATH:/llm/models \
|
||||
-e REPO_IDS="meta-llama/Llama-2-7b-chat-hf" \
|
||||
-e TEST_APIS="transformer_int4_gpu" \
|
||||
-e DEVICE=Arc \
|
||||
$DOCKER_IMAGE /llm/benchmark.sh
|
||||
```
|
||||
|
||||
### 3. Start Inference
|
||||
**Chat Interface**: Use `chat.py` for conversational AI.
|
||||
Customize environment variables to specify:
|
||||
|
||||
For example, if your model is Llama-2-7b-chat-hf and mounted on /llm/models, you can excute the following command to initiate a conversation:
|
||||
```bash
|
||||
cd /llm
|
||||
python chat.py --model-path /llm/models/Llama-2-7b-chat-hf
|
||||
```
|
||||
- **REPO_IDS:** Model's name and organization, separated by commas if multiple values exist.
|
||||
- **TEST_APIS:** Different test functions based on the machine, separated by commas if multiple values exist.
|
||||
- **DEVICE:** Type of device - Max, Flex, Arc.
|
||||
|
||||
To run inference using `IPEX-LLM` using xpu, you could refer to this [documentation](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU).
|
||||
**Result**
|
||||
|
||||
Upon completion, you can obtain a CSV result file, the content of CSV results will be printed out. You can mainly look at the results of columns `1st token avg latency (ms)` and `2+ avg latency (ms/token)` for the benchmark results.
|
||||
|
||||
## IPEX-LLM Serving on CPU
|
||||
FastChat is an open platform for training, serving, and evaluating large language model based chatbots. You can find the detailed information at their [homepage](https://github.com/lm-sys/FastChat).
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ ENV USE_XETLA=OFF
|
|||
ENV SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
|
||||
COPY chat.py /llm/chat.py
|
||||
COPY benchmark.sh /llm/benchmark.sh
|
||||
|
||||
# Disable pip's cache behavior
|
||||
ARG PIP_NO_CACHE_DIR=false
|
||||
|
|
@ -44,10 +45,20 @@ RUN curl -fsSL https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-P
|
|||
apt-get install -y intel-opencl-icd intel-level-zero-gpu=1.3.26241.33-647~22.04 level-zero level-zero-dev --allow-downgrades && \
|
||||
# Install related libary of chat.py
|
||||
pip install --upgrade colorama && \
|
||||
# Download all-in-one benchmark and examples
|
||||
git clone https://github.com/intel-analytics/ipex-llm && \
|
||||
cp -r ./ipex-llm/python/llm/dev/benchmark/ ./benchmark && \
|
||||
cp -r ./ipex-llm/python/llm/example/GPU/HF-Transformers-AutoModels/Model ./examples && \
|
||||
# Install vllm dependencies
|
||||
pip install --upgrade fastapi && \
|
||||
pip install --upgrade "uvicorn[standard]" && \
|
||||
# Download vLLM-Serving
|
||||
git clone https://github.com/intel-analytics/IPEX-LLM && \
|
||||
cp -r ./IPEX-LLM/python/llm/example/GPU/vLLM-Serving/ ./vLLM-Serving && \
|
||||
rm -rf ./IPEX-LLM
|
||||
rm -rf ./IPEX-LLM && \
|
||||
# Install related library of benchmarking
|
||||
pip install pandas && \
|
||||
pip install omegaconf && \
|
||||
chmod +x /llm/benchmark.sh
|
||||
|
||||
WORKDIR /llm/
|
||||
53
docker/llm/inference/xpu/docker/benchmark.sh
Normal file
53
docker/llm/inference/xpu/docker/benchmark.sh
Normal file
|
|
@ -0,0 +1,53 @@
|
|||
#!/bin/bash
|
||||
|
||||
echo "Repo ID is: $REPO_IDS"
|
||||
echo "Test API is: $TEST_APIS"
|
||||
echo "Device is: $DEVICE"
|
||||
|
||||
cd /benchmark/all-in-one
|
||||
|
||||
# Replace local_model_hub
|
||||
sed -i "s/'path to your local model hub'/'\/llm\/models'/" config.yaml
|
||||
|
||||
# Comment out repo_id
|
||||
sed -i -E "/repo_id:/,/local_model_hub/ s/^(\s*-)/ #&/" config.yaml
|
||||
|
||||
# Modify config.yaml with repo_id
|
||||
if [ -n "$REPO_IDS" ]; then
|
||||
for REPO_ID in $(echo "$REPO_IDS" | tr ',' '\n'); do
|
||||
# Add each repo_id value as a subitem of repo_id list
|
||||
sed -i -E "/^(repo_id:)/a \ - '$REPO_ID'" config.yaml
|
||||
done
|
||||
fi
|
||||
|
||||
# Comment out test_api
|
||||
sed -i -E "/test_api:/,/cpu_embedding/ s/^(\s*-)/ #&/" config.yaml
|
||||
|
||||
# Modify config.yaml with test_api
|
||||
if [ -n "$TEST_APIS" ]; then
|
||||
for TEST_API in $(echo "$TEST_APIS" | tr ',' '\n'); do
|
||||
# Add each test_api value as a subitem of test_api list
|
||||
sed -i -E "/^(test_api:)/a \ - '$TEST_API'" config.yaml
|
||||
done
|
||||
fi
|
||||
|
||||
|
||||
if [[ "$DEVICE" == "Arc" || "$DEVICE" == "ARC" ]]; then
|
||||
source ipex-llm-init -g --device Arc
|
||||
python run.py
|
||||
elif [[ "$DEVICE" == "Flex" || "$DEVICE" == "FLEX" ]]; then
|
||||
source ipex-llm-init -g --device Flex
|
||||
python run.py
|
||||
elif [[ "$DEVICE" == "Max" || "$DEVICE" == "MAX" ]]; then
|
||||
source ipex-llm-init -g --device Max
|
||||
python run.py
|
||||
else
|
||||
echo "Invalid DEVICE specified."
|
||||
fi
|
||||
|
||||
# print out results
|
||||
for file in *.csv; do
|
||||
echo ""
|
||||
echo "filename: $file"
|
||||
cat "$file"
|
||||
done
|
||||
|
|
@ -28,6 +28,9 @@
|
|||
<li>
|
||||
<a href="doc/LLM/Quickstart/docker_windows_gpu.html">Install IPEX-LLM in Docker on Windows with Intel GPU</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="doc/LLM/Quickstart/docker_pytorch_inference_gpu.html">Run PyTorch Inference on Intel GPU using Docker (on Linux or WSL)</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="doc/LLM/Quickstart/chatchat_quickstart.html">Run Local RAG using Langchain-Chatchat on Intel GPU</a>
|
||||
</li>
|
||||
|
|
|
|||
|
|
@ -0,0 +1,210 @@
|
|||
# Run PyTorch Inference on Intel GPU using Docker (on Linux or WSL)
|
||||
|
||||
We can run PyTorch Inference Benchmark, Chat Service and PyTorch Examples on Intel GPUs within Docker (on Linux or WSL).
|
||||
|
||||
## Install Docker
|
||||
|
||||
1. Linux Installation
|
||||
|
||||
Follow the instructions in this [guide](https://www.docker.com/get-started/) to install Docker on Linux.
|
||||
|
||||
2. Windows Installation
|
||||
|
||||
For Windows installation, refer to this [guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/docker_windows_gpu.html#install-docker-on-windows).
|
||||
|
||||
## Launch Docker
|
||||
|
||||
Prepare ipex-llm-xpu Docker Image:
|
||||
```bash
|
||||
docker pull intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
|
||||
```
|
||||
|
||||
Start ipex-llm-xpu Docker Container:
|
||||
```bash
|
||||
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
|
||||
export CONTAINER_NAME=my_container
|
||||
export MODEL_PATH=/llm/models[change to your model path]
|
||||
|
||||
docker run -itd \
|
||||
--net=host \
|
||||
--device=/dev/dri \
|
||||
--memory="32G" \
|
||||
--name=$CONTAINER_NAME \
|
||||
--shm-size="16g" \
|
||||
-v $MODEL_PATH:/llm/models \
|
||||
$DOCKER_IMAGE
|
||||
```
|
||||
|
||||
Access the container:
|
||||
```
|
||||
docker exec -it $CONTAINER_NAME bash
|
||||
```
|
||||
|
||||
To verify the device is successfully mapped into the container, run `sycl-ls` to check the result. In a machine with Arc A770, the sampled output is:
|
||||
|
||||
```bash
|
||||
root@arda-arc12:/# sycl-ls
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device 1.2 [2023.16.7.0.21_160000]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i9-13900K 3.0 [2023.16.7.0.21_160000]
|
||||
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics 3.0 [23.17.26241.33]
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26241]
|
||||
```
|
||||
|
||||
```eval_rst
|
||||
.. tip::
|
||||
|
||||
You can run the Env-Check script to verify your ipex-llm installation and runtime environment.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
cd /ipex-llm/python/llm/scripts
|
||||
bash env-check.sh
|
||||
|
||||
|
||||
```
|
||||
|
||||
## Run Inference Benchmark
|
||||
|
||||
Navigate to benchmark directory, and modify the `config.yaml` under the `all-in-one` folder for benchmark configurations.
|
||||
```bash
|
||||
cd /benchmark/all-in-one
|
||||
vim config.yaml
|
||||
```
|
||||
|
||||
**Modify config.yaml**
|
||||
```eval_rst
|
||||
.. note::
|
||||
|
||||
``dtype``: The model is originally loaded in this data type. After ipex-llm conversion, all the non-linear layers remain to use this data type.
|
||||
|
||||
``qtype``: ipex-llm will convert all the linear-layers' weight to this data type.
|
||||
```
|
||||
|
||||
|
||||
```yaml
|
||||
repo_id:
|
||||
# - 'THUDM/chatglm2-6b'
|
||||
- 'meta-llama/Llama-2-7b-chat-hf'
|
||||
# - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
|
||||
local_model_hub: 'path to your local model hub'
|
||||
warm_up: 1 # must set >=2 when run "pipeline_parallel_gpu" test_api
|
||||
num_trials: 3
|
||||
num_beams: 1 # default to greedy search
|
||||
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
|
||||
batch_size: 1 # default to 1
|
||||
in_out_pairs:
|
||||
- '32-32'
|
||||
- '1024-128'
|
||||
test_api:
|
||||
- "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4)
|
||||
# - "transformer_int4_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4)
|
||||
# - "transformer_int4_fp16_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16)
|
||||
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16)
|
||||
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
||||
# - "ipex_fp16_gpu" # on Intel GPU, use native transformers API, (dtype=fp16)
|
||||
# - "bigdl_fp16_gpu" # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
|
||||
# - "optimize_model_gpu" # on Intel GPU, can optimize any pytorch models include transformer model
|
||||
# - "deepspeed_optimize_model_gpu" # on Intel GPU, deepspeed autotp inference
|
||||
# - "pipeline_parallel_gpu" # on Intel GPU, pipeline parallel inference
|
||||
# - "speculative_gpu" # on Intel GPU, inference with self-speculative decoding
|
||||
# - "transformer_int4" # on Intel CPU, transformer-like API, (qtype=int4)
|
||||
# - "native_int4" # on Intel CPU
|
||||
# - "optimize_model" # on Intel CPU, can optimize any pytorch models include transformer model
|
||||
# - "pytorch_autocast_bf16" # on Intel CPU
|
||||
# - "transformer_autocast_bf16" # on Intel CPU
|
||||
# - "bigdl_ipex_bf16" # on Intel CPU, (qtype=bf16)
|
||||
# - "bigdl_ipex_int4" # on Intel CPU, (qtype=int4)
|
||||
# - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8)
|
||||
# - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
|
||||
cpu_embedding: False # whether put embedding to CPU
|
||||
streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)
|
||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only avaiable now for "pipeline_parallel_gpu" test_api)
|
||||
n_gpu: 2 # number of GPUs to use (only avaiable now for "pipeline_parallel_gpu" test_api)
|
||||
```
|
||||
|
||||
Some parameters in the yaml file that you can configure:
|
||||
|
||||
|
||||
- `repo_id`: The name of the model and its organization.
|
||||
- `local_model_hub`: The folder path where the models are stored on your machine. Replace 'path to your local model hub' with /llm/models.
|
||||
- `warm_up`: The number of warmup trials before performance benchmarking (must set to >= 2 when using "pipeline_parallel_gpu" test_api).
|
||||
- `num_trials`: The number of runs for performance benchmarking (the final result is the average of all trials).
|
||||
- `low_bit`: The low_bit precision you want to convert to for benchmarking.
|
||||
- `batch_size`: The number of samples on which the models make predictions in one forward pass.
|
||||
- `in_out_pairs`: Input sequence length and output sequence length combined by '-'.
|
||||
- `test_api`: Different test functions for different machines.
|
||||
- `cpu_embedding`: Whether to put embedding on CPU (only available for windows GPU-related test_api).
|
||||
- `streaming`: Whether to output in a streaming way (only available for GPU Windows-related test_api).
|
||||
- `use_fp16_torch_dtype`: Whether to use fp16 for the non-linear layer (only available for "pipeline_parallel_gpu" test_api).
|
||||
- `n_gpu`: Number of GPUs to use (only available for "pipeline_parallel_gpu" test_api).
|
||||
|
||||
|
||||
```eval_rst
|
||||
.. note::
|
||||
|
||||
If you want to benchmark the performance without warmup, you can set ``warm_up: 0`` and ``num_trials: 1`` in ``config.yaml``, and run each single model and in_out_pair separately.
|
||||
```
|
||||
|
||||
|
||||
After configuring the `config.yaml`, run the following scripts:
|
||||
```bash
|
||||
source ipex-llm-init --gpu --device <value>
|
||||
python run.py
|
||||
```
|
||||
|
||||
|
||||
**Result**
|
||||
|
||||
After the benchmarking is completed, you can obtain a CSV result file under the current folder. You can mainly look at the results of columns `1st token avg latency (ms)` and `2+ avg latency (ms/token)` for the benchmark results. You can also check whether the column `actual input/output tokens` is consistent with the column `input/output tokens` and whether the parameters you specified in `config.yaml` have been successfully applied in the benchmarking.
|
||||
|
||||
|
||||
## Run Chat Service
|
||||
|
||||
We provide `chat.py` for conversational AI.
|
||||
|
||||
For example, if your model is Llama-2-7b-chat-hf and mounted on /llm/models, you can execute the following command to initiate a conversation:
|
||||
```bash
|
||||
cd /llm
|
||||
python chat.py --model-path /llm/models/Llama-2-7b-chat-hf
|
||||
```
|
||||
|
||||
Here is a demostration:
|
||||
|
||||
<a align="left" href="https://llm-assets.readthedocs.io/en/latest/_images/llm-inference-cpu-docker-chatpy-demo.gif">
|
||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/llm-inference-cpu-docker-chatpy-demo.gif" width='60%' />
|
||||
|
||||
</a><br>
|
||||
|
||||
## Run PyTorch Examples
|
||||
|
||||
We provide several PyTorch examples that you could apply IPEX-LLM INT4 optimizations on models on Intel GPUs
|
||||
|
||||
For example, if your model is Llama-2-7b-chat-hf and mounted on /llm/models, you can navigate to /examples/llama2 directory, excute the following command to run example:
|
||||
```bash
|
||||
cd /examples/<model_dir>
|
||||
python ./generate.py --repo-id-or-model-path /llm/models/Llama-2-7b-chat-hf --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
**Sample Output**
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
<s>[INST] <<SYS>>
|
||||
|
||||
<</SYS>>
|
||||
|
||||
What is AI? [/INST]
|
||||
-------------------- Output --------------------
|
||||
[INST] <<SYS>>
|
||||
|
||||
<</SYS>>
|
||||
|
||||
What is AI? [/INST] Artificial intelligence (AI) is the broader field of research and development aimed at creating machines that can perform tasks that typically require human intelligence,
|
||||
```
|
||||
|
|
@ -12,6 +12,7 @@ This section includes efficient guide to show you how to:
|
|||
* `Install IPEX-LLM on Linux with Intel GPU <./install_linux_gpu.html>`_
|
||||
* `Install IPEX-LLM on Windows with Intel GPU <./install_windows_gpu.html>`_
|
||||
* `Install IPEX-LLM in Docker on Windows with Intel GPU <./docker_windows_gpu.html>`_
|
||||
* `Run PyTorch Inference on Intel GPU using Docker (on Linux or WSL) <./docker_benchmark_quickstart.html>`_
|
||||
* `Run Performance Benchmarking with IPEX-LLM <./benchmark_quickstart.html>`_
|
||||
* `Run Local RAG using Langchain-Chatchat on Intel GPU <./chatchat_quickstart.html>`_
|
||||
* `Run Text Generation WebUI on Intel GPU <./webui_quickstart.html>`_
|
||||
|
|
|
|||
|
|
@ -12,27 +12,27 @@ in_out_pairs:
|
|||
- '32-32'
|
||||
- '1024-128'
|
||||
test_api:
|
||||
- "transformer_int4_gpu" # on Intel GPU
|
||||
# - "transformer_int4_fp16_gpu" # on Intel GPU, use fp16 for non-linear layer
|
||||
# - "ipex_fp16_gpu" # on Intel GPU
|
||||
# - "bigdl_fp16_gpu" # on Intel GPU
|
||||
# - "optimize_model_gpu" # on Intel GPU
|
||||
# - "transformer_int4_gpu_win" # on Intel GPU for Windows
|
||||
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, use fp16 for non-linear layer
|
||||
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
||||
# - "deepspeed_optimize_model_gpu" # deepspeed autotp on Intel GPU
|
||||
# - "pipeline_parallel_gpu" # pipeline parallel inference on Intel GPU
|
||||
# - "speculative_gpu"
|
||||
# - "transformer_int4"
|
||||
# - "native_int4"
|
||||
# - "optimize_model"
|
||||
# - "pytorch_autocast_bf16"
|
||||
# - "transformer_autocast_bf16"
|
||||
# - "bigdl_ipex_bf16"
|
||||
# - "bigdl_ipex_int4"
|
||||
# - "bigdl_ipex_int8"
|
||||
# - "speculative_cpu"
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
|
||||
- "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4)
|
||||
# - "transformer_int4_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4)
|
||||
# - "transformer_int4_fp16_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16)
|
||||
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16)
|
||||
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
||||
# - "ipex_fp16_gpu" # on Intel GPU, use native transformers API, (dtype=fp16)
|
||||
# - "bigdl_fp16_gpu" # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
|
||||
# - "optimize_model_gpu" # on Intel GPU, can optimize any pytorch models include transformer model
|
||||
# - "deepspeed_optimize_model_gpu" # on Intel GPU, deepspeed autotp inference
|
||||
# - "pipeline_parallel_gpu" # on Intel GPU, pipeline parallel inference
|
||||
# - "speculative_gpu" # on Intel GPU, inference with self-speculative decoding
|
||||
# - "transformer_int4" # on Intel CPU, transformer-like API, (qtype=int4)
|
||||
# - "native_int4" # on Intel CPU
|
||||
# - "optimize_model" # on Intel CPU, can optimize any pytorch models include transformer model
|
||||
# - "pytorch_autocast_bf16" # on Intel CPU
|
||||
# - "transformer_autocast_bf16" # on Intel CPU
|
||||
# - "bigdl_ipex_bf16" # on Intel CPU, (qtype=bf16)
|
||||
# - "bigdl_ipex_int4" # on Intel CPU, (qtype=int4)
|
||||
# - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8)
|
||||
# - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
|
||||
cpu_embedding: False # whether put embedding to CPU
|
||||
streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)
|
||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only avaiable now for "pipeline_parallel_gpu" test_api)
|
||||
|
|
|
|||
Loading…
Reference in a new issue