* refactor toc * refactor toc * Change to pydata-sphinx-theme and update packages requirement list for ReadtheDocs * Remove customized css for old theme * Add index page to each top bar section and limit dropdown maximum to be 4 * Use js to change 'More' to 'Libraries' * Add custom.css to conf.py for further css changes * Add BigDL logo and search bar * refactor toc * refactor toc and add overview * refactor toc and add overview * refactor toc and add overview * refactor get started * add paper and video section * add videos * add grid columns in landing page * add document roadmap to index * reapply search bar and github icon commit * reorg orca and chronos sections * Test: weaken ads by js * update: change left attrbute * update: add comments * update: change opacity to 0.7 * Remove useless theme template override for old theme * Add sidebar releases component in the home page * Remove sidebar search and restore top nav search button * Add BigDL handouts * Add back to homepage button to pages except from the home page * Update releases contents & styles in left sidebar * Add version badge to the top bar * Test: weaken ads by js * update: add comments * remove landing page contents * rfix chronos install * refactor install * refactor chronos section titles * refactor nano index * change chronos landing * revise chronos landing page * add document navigator to nano landing page * revise install landing page * Improve css of versions in sidebar * Make handouts image pointing to a page in new tab * add win guide to install * add dliib installation * revise title bar * rename index files * add index page for user guide * add dllib and orca API * update user guide landing page * refactor side bar * Remove extra style configuration of card components & make different card usage consistent * Remove extra styles for Nano how-to guides * Remove extra styles for Chronos how-to guides * Remove dark mode for now * Update index page description * Add decision tree for choosing BigDL libraries in index page * add dllib models api, revise core layers formats * Change primary & info color in light mode * Restyle card components * Restructure Chronos landing page * Update card style * Update BigDL library selection decision tree * Fix failed Chronos tutorials filter * refactor PPML documents * refactor and add friesian documents * add friesian arch diagram * update landing pages and fill key features guide index page * Restyle link card component * Style video frames in PPML sections * Adjust Nano landing page * put api docs to the last in index for convinience * Make badge horizontal padding smaller & small changes * Change the second letter of all header titles to be small capitalizd * Small changes on Chronos index page * Revise decision tree to make it smaller * Update: try to change the position of ads. * Bugfix: deleted nonexist file config * Update: update ad JS/CSS/config * Update: change ad. * Update: delete my template and change files. * Update: change chronos installation table color. * Update: change table font color to --pst-color-primary-text * Remove old contents in landing page sidebar * Restyle badge for usage in card footer again * Add quicklinks template on landing page sidebar * add quick links * Add scala logo * move tf, pytorch out of the link * change orca key features cards * fix typo * fix a mistake in wording * Restyle badge for card footer * Update decision tree * Remove useless html templates * add more api docs and update tutorials in dllib * update chronos install using new style * merge changes in nano doc from master * fix quickstart links in sidebar quicklinks * Make tables responsive * Fix overflow in api doc * Fix list indents problems in [User guide] section * Further fixes to nested bullets contents in [User Guide] section * Fix strange title in Nano 5-min doc * Fix list indent problems in [DLlib] section * Fix misnumbered list problems and other small fixes for [Chronos] section * Fix list indent problems and other small fixes for [Friesian] section * Fix list indent problem and other small fixes for [PPML] section * Fix list indent problem for developer guide * Fix list indent problem for [Cluster Serving] section * fix dllib links * Fix wrong relative link in section landing page Co-authored-by: Yuwen Hu <yuwen.hu@intel.com> Co-authored-by: Juntao Luo <1072087358@qq.com>
		
			
				
	
	
	
	
		
			5.1 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	DLlib in 5 minutes
Overview
DLlib is a distributed deep learning library for Apache Spark; with DLlib, users can write their deep learning applications as standard Spark programs (using either Scala or Python APIs).
It includes the functionalities of the original BigDL project, and provides following high-level APIs for distributed deep learning on Spark:
Scala Example
This section show a single example of how to use dllib to build a deep learning application on Spark, using Keras APIs
LeNet Model on MNIST using Keras-Style API
This tutorial is an explanation of what is happening in the lenet example
A bigdl-dllib program starts with initialize as follows.
val conf = Engine.createSparkConf()
  .setAppName("Train Lenet on MNIST")
  .set("spark.task.maxFailures", "1")
val sc = new SparkContext(conf)
Engine.init
After the initialization, we need to:
- 
Load train and validation data by creating the
DataSet(e.g.,SampleToGreyImg,GreyImgNormalizerandGreyImgToBatch):val trainSet = (if (sc.isDefined) { DataSet.array(load(trainData, trainLabel), sc.get, param.nodeNumber) } else { DataSet.array(load(trainData, trainLabel)) }) -> SampleToGreyImg(28, 28) -> GreyImgNormalizer(trainMean, trainStd) -> GreyImgToBatch( param.batchSize) val validationSet = DataSet.array(load(validationData, validationLabel), sc) -> BytesToGreyImg(28, 28) -> GreyImgNormalizer(testMean, testStd) -> GreyImgToBatch( param.batchSize) - 
We then define Lenet model using Keras-style api
val input = Input(inputShape = Shape(28, 28, 1)) val reshape = Reshape(Array(1, 28, 28)).inputs(input) val conv1 = Convolution2D(6, 5, 5, activation = "tanh").setName("conv1_5x5").inputs(reshape) val pool1 = MaxPooling2D().inputs(conv1) val conv2 = Convolution2D(12, 5, 5, activation = "tanh").setName("conv2_5x5").inputs(pool1) val pool2 = MaxPooling2D().inputs(conv2) val flatten = Flatten().inputs(pool2) val fc1 = Dense(100, activation = "tanh").setName("fc1").inputs(flatten) val fc2 = Dense(classNum, activation = "softmax").setName("fc2").inputs(fc1) Model(input, fc2) - 
After that, we configure the learning process. Set the
optimization methodand theCriterion(which, given input and target, computes gradient per given loss function):model.compile(optimizer = optimMethod, loss = ClassNLLCriterion[Float](logProbAsInput = false), metrics = Array(new Top1Accuracy[Float](), new Top5Accuracy[Float](), new Loss[Float])) 
Finally we train the model by calling model.fit:
model.fit(trainSet, nbEpoch = param.maxEpoch, validationData = validationSet)
Python Example
Initialize NN Context
NNContext is the main entry for provisioning the dllib program on the underlying cluster (such as K8s or Hadoop cluster), or just on a single laptop.
An dlllib program usually starts with the initialization of NNContext as follows:
from bigdl.dllib.nncontext import *
init_nncontext()
In init_nncontext, the user may specify cluster mode for the dllib program:
- Cluster mode=: "local", "yarn-client", "yarn-cluster", "k8s-client", "standalone" and "spark-submit". Default to be "local".
 
The dllib program simply runs init_nncontext on the local machine, which will automatically provision the runtime Python environment and distributed execution engine on the underlying computing environment (such as a single laptop, a large K8s or Hadoop cluster, etc.).
Autograd Examples using bigdl-dllb keras Python API
This tutorial describes the Autograd.
The example first do the initializton using init_nncontext():
sc = init_nncontext()
It then generate the input data X_, Y_
data_len = 1000
X_ = np.random.uniform(0, 1, (1000, 2))
Y_ = ((2 * X_).sum(1) + 0.4).reshape([data_len, 1])
It then define the custom loss
def mean_absolute_error(y_true, y_pred):
    result = mean(abs(y_true - y_pred), axis=1)
    return result
After that, the example creates the model as follows and set the criterion as the custom loss:
a = Input(shape=(2,))
b = Dense(1)(a)
c = Lambda(function=add_one_func)(b)
model = Model(input=a, output=c)
model.compile(optimizer=SGD(learningrate=1e-2),
              loss=mean_absolute_error)
Finally the example trains the model by calling model.fit:
model.fit(x=X_,
          y=Y_,
          batch_size=32,
          nb_epoch=int(options.nb_epoch),
          distributed=False)