ipex-llm/python/llm/dev/benchmark
Chen, Zhentao d19ca21957 patch bigdl-llm model to harness by binding instead of patch file (#9420)
* add run_llb.py

* fix args interpret

* modify outputs

* update workflow

* add license

* test mixed 4 bit

* update readme

* use autotokenizer

* add timeout

* refactor workflow file

* fix working directory

* fix env

* throw exception if some jobs failed

* improve terminal outputs

* Disable var which cause the run stuck

* fix unknown precision

* fix key error

* directly output config instead

* rm harness submodule
2023-11-14 12:51:39 +08:00
..
all-in-one LLM: add chatglm3-6b to latency benchmark test. (#9442) 2023-11-13 17:24:37 +08:00
harness patch bigdl-llm model to harness by binding instead of patch file (#9420) 2023-11-14 12:51:39 +08:00
pipelines [LLM] Performance test (#8796) 2023-08-25 14:31:45 +08:00
benchmark_util.py LLM: update benchmark_util.py for beam search (#9126) 2023-10-11 09:41:53 +08:00
README.md update benchmark_utils readme (#8925) 2023-09-08 10:30:26 +08:00
run-benchmark-tests.sh [LLM] Small update to performance tests (#9106) 2023-10-09 16:55:25 +08:00

Benchmark tool for transformers int4 (separate 1st token and rest)

benchmark_util.py is used to provide a simple benchmark tool for transformer int4 model to calculate 1st token performance and the rest on CPU and GPU.

CPU Usage

Just put this file into your benchmark directory, and then wrap your transformer int4 model with BenchmarkWrapper (model = BenchmarkWrapper(model)). Take chatglm-6b as an example:

import torch
from bigdl.llm.transformers import AutoModel
from transformers import AutoTokenizer
from benchmark_util import BenchmarkWrapper

model_path ='THUDM/chatglm-6b'
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
model = BenchmarkWrapper(model, do_print=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompt = "今天睡不着怎么办"
 
with torch.inference_mode():
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
    output_str = tokenizer.decode(output[0], skip_special_tokens=True)

Output will be like:

=========First token cost xx.xxxxs=========
=========Last token cost average xx.xxxxs (31 tokens in all)=========

GPU Usage

Just put this file into your benchmark directory, and then wrap your transformer int4 model with BenchmarkWrapper (model = BenchmarkWrapper(model)). Take chatglm-6b as an example:

import torch
import intel_extension_for_pytorch as ipex
from bigdl.llm.transformers import AutoModel
from transformers import AutoTokenizer
from benchmark_util import BenchmarkWrapper

model_path ='THUDM/chatglm-6b'
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
model = model.to('xpu')
model = BenchmarkWrapper(model, do_print=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompt = "今天睡不着怎么办"
 
with torch.inference_mode():
    # wamup two times as use ipex
    for i in range(2):
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
        output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
    # collect performance data now
    for i in range(5):
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
        output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)

Output will be like:

=========First token cost xx.xxxxs=========
=========Last token cost average xx.xxxxs (31 tokens in all)=========