patch bigdl-llm model to harness by binding instead of patch file (#9420)
* add run_llb.py * fix args interpret * modify outputs * update workflow * add license * test mixed 4 bit * update readme * use autotokenizer * add timeout * refactor workflow file * fix working directory * fix env * throw exception if some jobs failed * improve terminal outputs * Disable var which cause the run stuck * fix unknown precision * fix key error * directly output config instead * rm harness submodule
This commit is contained in:
parent
51d07a9fd8
commit
d19ca21957
7 changed files with 347 additions and 257 deletions
42
.github/workflows/llm-harness-evaluation.yml
vendored
42
.github/workflows/llm-harness-evaluation.yml
vendored
|
|
@ -20,25 +20,28 @@ on:
|
|||
jobs:
|
||||
llm-cpp-build:
|
||||
uses: ./.github/workflows/llm-binary-build.yml
|
||||
llm-nightly-harness-test:
|
||||
llm-harness-evalution:
|
||||
timeout-minutes: 1000
|
||||
needs: llm-cpp-build
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
# include:
|
||||
# python-version: "3.9"
|
||||
# model_name: "stablelm-3b-4e1t"
|
||||
# task: "arc"
|
||||
# precision: "sym_int4" #options: sym_int4, fp4, nf4, mixed_4bit, fp8
|
||||
python-version: ["3.9"]
|
||||
model_name: [stablelm-3b-4e1t]
|
||||
task: ["truthfulqa"]
|
||||
precision: ["int4"]
|
||||
precision: [sym_int4] #options: sym_int4, fp4, nf4, mixed_4bit, fp8
|
||||
|
||||
runs-on: [self-hosted, llm, accuracy, temp-arc01]
|
||||
env:
|
||||
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||
ORIGIN_DIR: /mnt/disk1/models
|
||||
HARNESS_HF_HOME: /mnt/disk1/harness_home
|
||||
steps:
|
||||
- name: Set model and dataset directories
|
||||
shell: bash
|
||||
run: |
|
||||
echo "ORIGIN_DIR=/mnt/disk1/models" >> "$GITHUB_ENV"
|
||||
echo "HARNESS_HF_HOME=/mnt/disk1/harness_home" >> "$GITHUB_ENV"
|
||||
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v4
|
||||
|
|
@ -60,16 +63,13 @@ jobs:
|
|||
extra-dependency: "xpu"
|
||||
|
||||
- name: Install harness
|
||||
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness/
|
||||
shell: bash
|
||||
run: |
|
||||
cd python/llm/dev/benchmark/harness/
|
||||
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
|
||||
cd lm-evaluation-harness
|
||||
git checkout e81d3cc
|
||||
pip install -e .
|
||||
git apply ../bigdl-llm.patch
|
||||
cd ..
|
||||
|
||||
|
||||
- name: Download models and datasets
|
||||
shell: bash
|
||||
|
|
@ -84,17 +84,21 @@ jobs:
|
|||
wget -r -nH --no-verbose --cut-dirs=1 ${LLM_FTP_URL}/llm/${{ matrix.model_name }} -P ${ORIGIN_DIR}
|
||||
fi
|
||||
|
||||
- name: Set datasets env
|
||||
- name: Upgrade packages
|
||||
shell: bash
|
||||
run: |
|
||||
echo "HF_HOME=$HARNESS_HF_HOME" >> "$GITHUB_ENV"
|
||||
echo "HF_DATASETS=$HARNESS_HF_HOME/datasets" >> "$GITHUB_ENV"
|
||||
echo "HF_DATASETS_CACHE=$HARNESS_HF_HOME/datasets" >> "$GITHUB_ENV"
|
||||
pip install --upgrade transformers
|
||||
|
||||
- name: Run harness
|
||||
shell: bash
|
||||
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
|
||||
env:
|
||||
USE_XETLA: OFF
|
||||
# SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS: 1
|
||||
run: |
|
||||
export USE_XETLA=OFF
|
||||
export HF_HOME=${HARNESS_HF_HOME}
|
||||
export HF_DATASETS=$HARNESS_HF_HOME/datasets
|
||||
export HF_DATASETS_CACHE=$HARNESS_HF_HOME/datasets
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
cd python/llm/dev/benchmark/harness
|
||||
python llb.py --model bigdl-llm --pretrained ${MODEL_PATH} --precision ${{ matrix.precision }} --device xpu --tasks ${{ matrix.task }} --output_dir results/${{ matrix.model_name }} --batch 1
|
||||
python run_llb.py --model bigdl-llm --pretrained ${MODEL_PATH} --precision ${{ matrix.precision }} --device xpu --tasks ${{ matrix.task }} --batch_size 1 --no_cache
|
||||
|
||||
|
|
|
|||
|
|
@ -9,20 +9,18 @@ git clone https://github.com/EleutherAI/lm-evaluation-harness.git
|
|||
cd lm-evaluation-harness
|
||||
git checkout e81d3cc
|
||||
pip install -e .
|
||||
git apply ../bigdl-llm.patch
|
||||
cd ..
|
||||
```
|
||||
|
||||
## Run
|
||||
run `python llb.py`. `llb.py` combines some arguments in `main.py` to make evalutions easier. The mapping of arguments is defined as a dict in [`llb.py`](llb.py).
|
||||
run `python run_llb.py`. `run_llb.py` combines some arguments in `main.py` to make evalutions easier. The mapping of arguments is defined as a dict in [`llb.py`](llb.py).
|
||||
|
||||
### Evaluation on CPU
|
||||
```python
|
||||
python llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 int4 nf4 --device cpu --tasks hellaswag arc mmlu truthfulqa --output_dir results/output
|
||||
python run_llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 sym_int4 nf4 --device cpu --tasks hellaswag arc mmlu truthfulqa --batch 1 --no_cache
|
||||
```
|
||||
### Evaluation on Intel GPU
|
||||
```python
|
||||
python llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 int4 nf4 --device xpu --tasks hellaswag arc mmlu truthfulqa --output_dir results/output
|
||||
python run_llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 sym_int4 nf4 --device xpu --tasks hellaswag arc mmlu truthfulqa --batch 1 --no_cache
|
||||
```
|
||||
## Results
|
||||
We follow [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to record our metrics, `acc_norm` for `hellaswag` and `arc_challenge`, `mc2` for `truthful_qa` and `acc` for `mmlu`. For `mmlu`, there are 57 subtasks which means users may need to average them manually to get final result.
|
||||
|
|
|
|||
|
|
@ -1,151 +0,0 @@
|
|||
diff --git a/lm_eval/models/__init__.py b/lm_eval/models/__init__.py
|
||||
index 8ca27fac..6b581487 100644
|
||||
--- a/lm_eval/models/__init__.py
|
||||
+++ b/lm_eval/models/__init__.py
|
||||
@@ -4,6 +4,7 @@ from . import anthropic_llms
|
||||
from . import huggingface
|
||||
from . import textsynth
|
||||
from . import dummy
|
||||
+from . import bigdl_llm
|
||||
|
||||
MODEL_REGISTRY = {
|
||||
"hf": gpt2.HFLM,
|
||||
@@ -15,6 +16,7 @@ MODEL_REGISTRY = {
|
||||
"anthropic": anthropic_llms.AnthropicLM,
|
||||
"textsynth": textsynth.TextSynthLM,
|
||||
"dummy": dummy.DummyLM,
|
||||
+ "bigdl-llm": bigdl_llm.BigDLLM
|
||||
}
|
||||
|
||||
|
||||
diff --git a/lm_eval/models/bigdl_llm.py b/lm_eval/models/bigdl_llm.py
|
||||
new file mode 100644
|
||||
index 00000000..74010da3
|
||||
--- /dev/null
|
||||
+++ b/lm_eval/models/bigdl_llm.py
|
||||
@@ -0,0 +1,124 @@
|
||||
+#
|
||||
+# Copyright 2016 The BigDL Authors.
|
||||
+#
|
||||
+# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
+# you may not use this file except in compliance with the License.
|
||||
+# You may obtain a copy of the License at
|
||||
+#
|
||||
+# http://www.apache.org/licenses/LICENSE-2.0
|
||||
+#
|
||||
+# Unless required by applicable law or agreed to in writing, software
|
||||
+# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
+# See the License for the specific language governing permissions and
|
||||
+# limitations under the License.
|
||||
+#
|
||||
+
|
||||
+
|
||||
+# this code is copied from llama2 example test, and added performance test
|
||||
+import os
|
||||
+import multiprocessing
|
||||
+
|
||||
+from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
+
|
||||
+import torch
|
||||
+from typing import Optional, Union
|
||||
+from lm_eval.base import BaseLM
|
||||
+
|
||||
+from transformers import AutoTokenizer, LlamaTokenizer
|
||||
+
|
||||
+def _get_dtype(
|
||||
+ dtype: Union[str, torch.dtype]
|
||||
+) -> torch.dtype:
|
||||
+ """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
|
||||
+ if isinstance(dtype, str) and dtype != "auto":
|
||||
+ # Convert `str` args torch dtype: `float16` -> `torch.float16`
|
||||
+ _torch_dtype = getattr(torch, dtype)
|
||||
+ else:
|
||||
+ _torch_dtype = dtype
|
||||
+ return _torch_dtype
|
||||
+
|
||||
+class BigDLLM(BaseLM):
|
||||
+ def __init__(
|
||||
+ self,
|
||||
+ device="xpu",
|
||||
+ pretrained="gpt2",
|
||||
+ revision="main",
|
||||
+ low_cpu_mem_usage=None,
|
||||
+ subfolder=None,
|
||||
+ tokenizer=None,
|
||||
+ batch_size=1,
|
||||
+ load_in_8bit: Optional[bool] = False,
|
||||
+ trust_remote_code: Optional[bool] = False,
|
||||
+ load_in_low_bit=None,
|
||||
+ dtype: Optional[Union[str, torch.dtype]] = "auto",
|
||||
+ ):
|
||||
+ super().__init__()
|
||||
+
|
||||
+ assert isinstance(pretrained, str)
|
||||
+ assert isinstance(batch_size, (int,str))
|
||||
+ if 'xpu' in device:
|
||||
+ import intel_extension_for_pytorch as ipex
|
||||
+ model = AutoModelForCausalLM.from_pretrained(pretrained,
|
||||
+ load_in_low_bit=load_in_low_bit,
|
||||
+ optimize_model=True,
|
||||
+ trust_remote_code=True,
|
||||
+ use_cache=True,
|
||||
+ torch_dtype=_get_dtype(dtype))
|
||||
+ print(model) # print model to check precision
|
||||
+ self._device = device
|
||||
+ self.model = model.to(device)
|
||||
+
|
||||
+ self.tokenizer = AutoTokenizer.from_pretrained(pretrained, trust_remote_code=True)
|
||||
+
|
||||
+ # setup for automatic batch size detection
|
||||
+ if batch_size == 'auto':
|
||||
+ self.batch_size_per_gpu = batch_size
|
||||
+ else:
|
||||
+ self.batch_size_per_gpu = int(batch_size)
|
||||
+
|
||||
+ @property
|
||||
+ def eot_token_id(self):
|
||||
+ # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
|
||||
+ return self.model.token_eos()
|
||||
+
|
||||
+ @property
|
||||
+ def max_length(self):
|
||||
+ return 2048 # TODO: how to get this from config
|
||||
+
|
||||
+ @property
|
||||
+ def max_gen_toks(self):
|
||||
+ return 256
|
||||
+
|
||||
+ @property
|
||||
+ def batch_size(self):
|
||||
+ # TODO: fix multi-gpu
|
||||
+ return self.batch_size_per_gpu # * gpus
|
||||
+
|
||||
+ @property
|
||||
+ def device(self):
|
||||
+ # TODO: fix multi-gpu
|
||||
+ return torch.device(self._device)
|
||||
+
|
||||
+ def tok_encode(self, string: str):
|
||||
+ input_ids = self.tokenizer.encode(string)
|
||||
+ return input_ids
|
||||
+
|
||||
+ def tok_decode(self, tokens):
|
||||
+ return self.tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
+
|
||||
+ def _model_call(self, inps):
|
||||
+ """
|
||||
+ inps: a torch tensor of shape [batch, sequence]
|
||||
+ the size of sequence may vary from call to call
|
||||
+
|
||||
+ returns: a torch tensor of shape [batch, sequence, vocab] with the
|
||||
+ logits returned from the model
|
||||
+ """
|
||||
+ with torch.inference_mode():
|
||||
+ inps = inps.to(self.device)
|
||||
+ res = self.model(inps)[0]
|
||||
+ return res
|
||||
+
|
||||
+ def _model_generate(self, context, max_length, eos_token_id):
|
||||
+ return self.model(context, max_tokens=max_length, stop=["Q:", "\n"], echo=True)
|
||||
\ No newline at end of file
|
||||
121
python/llm/dev/benchmark/harness/bigdl_llm.py
Normal file
121
python/llm/dev/benchmark/harness/bigdl_llm.py
Normal file
|
|
@ -0,0 +1,121 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import os
|
||||
import multiprocessing
|
||||
|
||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
|
||||
import torch
|
||||
from typing import Optional, Union
|
||||
from lm_eval.base import BaseLM
|
||||
|
||||
from transformers import AutoTokenizer, LlamaTokenizer
|
||||
|
||||
def _get_dtype(
|
||||
dtype: Union[str, torch.dtype]
|
||||
) -> torch.dtype:
|
||||
"""Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
|
||||
if isinstance(dtype, str) and dtype != "auto":
|
||||
# Convert `str` args torch dtype: `float16` -> `torch.float16`
|
||||
_torch_dtype = getattr(torch, dtype)
|
||||
else:
|
||||
_torch_dtype = dtype
|
||||
return _torch_dtype
|
||||
|
||||
class BigDLLM(BaseLM):
|
||||
def __init__(
|
||||
self,
|
||||
device="xpu",
|
||||
pretrained="gpt2",
|
||||
revision="main",
|
||||
low_cpu_mem_usage=None,
|
||||
subfolder=None,
|
||||
tokenizer=None,
|
||||
batch_size=1,
|
||||
load_in_8bit: Optional[bool] = False,
|
||||
trust_remote_code: Optional[bool] = False,
|
||||
load_in_low_bit=None,
|
||||
dtype: Optional[Union[str, torch.dtype]] = "auto",
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
assert isinstance(pretrained, str)
|
||||
assert isinstance(batch_size, (int,str))
|
||||
if device == 'xpu':
|
||||
import intel_extension_for_pytorch as ipex
|
||||
model = AutoModelForCausalLM.from_pretrained(pretrained,
|
||||
load_in_low_bit=load_in_low_bit,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True,
|
||||
use_cache=True,
|
||||
torch_dtype=_get_dtype(dtype))
|
||||
print(model) # print model to check precision
|
||||
self._device = device
|
||||
self.model = model.to(device)
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(pretrained, trust_remote_code=True)
|
||||
|
||||
# setup for automatic batch size detection
|
||||
if batch_size == 'auto':
|
||||
self.batch_size_per_gpu = batch_size
|
||||
else:
|
||||
self.batch_size_per_gpu = int(batch_size)
|
||||
|
||||
@property
|
||||
def eot_token_id(self):
|
||||
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
|
||||
return self.model.token_eos()
|
||||
|
||||
@property
|
||||
def max_length(self):
|
||||
return 2048 # TODO: how to get this from config
|
||||
|
||||
@property
|
||||
def max_gen_toks(self):
|
||||
return 256
|
||||
|
||||
@property
|
||||
def batch_size(self):
|
||||
# TODO: fix multi-gpu
|
||||
return self.batch_size_per_gpu # * gpus
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
# TODO: fix multi-gpu
|
||||
return torch.device(self._device)
|
||||
|
||||
def tok_encode(self, string: str):
|
||||
input_ids = self.tokenizer.encode(string)
|
||||
return input_ids
|
||||
|
||||
def tok_decode(self, tokens):
|
||||
return self.tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
|
||||
def _model_call(self, inps):
|
||||
"""
|
||||
inps: a torch tensor of shape [batch, sequence]
|
||||
the size of sequence may vary from call to call
|
||||
|
||||
returns: a torch tensor of shape [batch, sequence, vocab] with the
|
||||
logits returned from the model
|
||||
"""
|
||||
with torch.inference_mode():
|
||||
inps = inps.to(self.device)
|
||||
res = self.model(inps)[0]
|
||||
return res
|
||||
|
||||
def _model_generate(self, context, max_length, eos_token_id):
|
||||
return self.model(context, max_tokens=max_length, stop=["Q:", "\n"], echo=True)
|
||||
51
python/llm/dev/benchmark/harness/harness_to_leaderboard.py
Normal file
51
python/llm/dev/benchmark/harness/harness_to_leaderboard.py
Normal file
|
|
@ -0,0 +1,51 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from regex import match
|
||||
|
||||
|
||||
task_map = dict(
|
||||
hellaswag="hellaswag",
|
||||
arc="arc_challenge",
|
||||
truthfulqa="truthfulqa_mc",
|
||||
mmlu="hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions"
|
||||
)
|
||||
|
||||
|
||||
task_to_n_few_shots = dict(
|
||||
hellaswag=10,
|
||||
arc=25,
|
||||
truthfulqa=0,
|
||||
mmlu=5
|
||||
)
|
||||
|
||||
|
||||
def parse_precision(precision, model="bigdl-llm"):
|
||||
result = match(r"([a-zA-Z_]*)(\d+)", precision)
|
||||
datatype = result.group(1)
|
||||
bit = int(result.group(2))
|
||||
if bit >= 16:
|
||||
float_map = dict(
|
||||
bf16="bfloat16",
|
||||
fp16="float16",
|
||||
fp32="float32"
|
||||
)
|
||||
return f"dtype={float_map[precision]}"
|
||||
else:
|
||||
if model == "hf-causal":
|
||||
return f"bnb_type={precision}"
|
||||
if model == "bigdl-llm":
|
||||
return f"load_in_low_bit={precision}"
|
||||
raise RuntimeError(f"invald precision {precision}")
|
||||
|
|
@ -1,82 +0,0 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
# this code is copied from llama2 example test, and added performance test
|
||||
import argparse
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
task_cmd = "--num_fewshot {} --tasks {}"
|
||||
|
||||
task_map = {
|
||||
"hellaswag": task_cmd.format(10, "hellaswag"),
|
||||
"arc": task_cmd.format(25, "arc_challenge"),
|
||||
"truthfulqa": task_cmd.format(0, "truthfulqa_mc"),
|
||||
"mmlu": task_cmd.format(5, "hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions")
|
||||
}
|
||||
|
||||
prec_to_arg = {
|
||||
"bigdl-llm": {
|
||||
"int4": "load_in_low_bit=sym_int4",
|
||||
"nf4": "load_in_low_bit=nf4",
|
||||
"nf3": "load_in_low_bit=nf3",
|
||||
"fp8": "load_in_low_bit=fp8",
|
||||
"fp4": "load_in_low_bit=fp4",
|
||||
"bf16": "dtype=bfloat16",
|
||||
"fp16": "dtype=float16",
|
||||
},
|
||||
"hf-causal": {
|
||||
"nf4": "bnb_type=nf4",
|
||||
"bf16": "dtype=bfloat16",
|
||||
"fp16": "dtype=float16",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", required=True, type=str)
|
||||
parser.add_argument("--pretrained", required=True, type=str)
|
||||
parser.add_argument("--precision", required=True, nargs='+', type=str)
|
||||
parser.add_argument("--device", required=True, type=str)
|
||||
parser.add_argument("--batch", default=1, type=int)
|
||||
parser.add_argument("--tasks", required=True, nargs='+', type=str)
|
||||
parser.add_argument("--output_dir", type=str)
|
||||
args = parser.parse_args()
|
||||
print(args.model)
|
||||
print(args.tasks)
|
||||
basic_cmd = "python lm-evaluation-harness/main.py --model {} --model_args pretrained={},{} --no_cache --device {} --batch_size {} {} --output_path {} "
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
index = 1
|
||||
total = len(args.precision) * len(args.tasks)
|
||||
for prec in args.precision:
|
||||
prec_arg = prec_to_arg[args.model][prec]
|
||||
for task in args.tasks:
|
||||
output_path = f"{args.model}_{prec}_{args.device}_{task}"
|
||||
task_arg = task_map[task]
|
||||
cmd_exec = basic_cmd.format(args.model, args.pretrained, prec_arg, args.device, args.batch,
|
||||
task_arg, f"{args.output_dir}/{output_path}")
|
||||
print(f"Running job {index}/{total}:\n{cmd_exec}")
|
||||
index += 1
|
||||
with open(f"{args.output_dir}/log_{output_path}.txt", "w") as f:
|
||||
return_code = subprocess.call(cmd_exec, shell=True)
|
||||
if return_code == 0:
|
||||
print("Successful")
|
||||
else:
|
||||
print("Failed")
|
||||
|
||||
main()
|
||||
149
python/llm/dev/benchmark/harness/run_llb.py
Normal file
149
python/llm/dev/benchmark/harness/run_llb.py
Normal file
|
|
@ -0,0 +1,149 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import argparse
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from harness_to_leaderboard import *
|
||||
from lm_eval import tasks, evaluator, utils, models
|
||||
|
||||
from bigdl_llm import BigDLLM
|
||||
models.MODEL_REGISTRY['bigdl-llm'] = BigDLLM # patch bigdl-llm to harness
|
||||
|
||||
logging.getLogger("openai").setLevel(logging.WARNING)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", required=True)
|
||||
parser.add_argument("--model_args", default="")
|
||||
parser.add_argument("--pretrained", required=True, type=str)
|
||||
parser.add_argument("--tasks", required=True, nargs='+', type=str)
|
||||
parser.add_argument("--precision", required=True, nargs='+', type=str)
|
||||
parser.add_argument("--provide_description", action="store_true")
|
||||
parser.add_argument("--num_fewshot", type=int, default=0)
|
||||
parser.add_argument("--batch_size", type=str, default=None)
|
||||
parser.add_argument(
|
||||
"--max_batch_size",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Maximal batch size to try with --batch_size auto",
|
||||
)
|
||||
parser.add_argument("--device", type=str, default=None)
|
||||
parser.add_argument("--output_path", default=None)
|
||||
parser.add_argument(
|
||||
"--limit",
|
||||
type=float,
|
||||
default=None,
|
||||
help="Limit the number of examples per task. "
|
||||
"If <1, limit is a percentage of the total number of examples.",
|
||||
)
|
||||
parser.add_argument("--data_sampling", type=float, default=None)
|
||||
parser.add_argument("--no_cache", action="store_true")
|
||||
parser.add_argument("--decontamination_ngrams_path", default=None)
|
||||
parser.add_argument("--description_dict_path", default=None)
|
||||
parser.add_argument("--check_integrity", action="store_true")
|
||||
parser.add_argument("--write_out", action="store_true", default=False)
|
||||
parser.add_argument("--output_base_path", type=str, default=None)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
assert not args.provide_description # not implemented
|
||||
|
||||
if args.limit:
|
||||
print(
|
||||
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
|
||||
)
|
||||
|
||||
# if args.tasks is None:
|
||||
# task_names = tasks.ALL_TASKS
|
||||
# else:
|
||||
# task_names = utils.pattern_match(args.tasks.split(","), tasks.ALL_TASKS)
|
||||
|
||||
print(f"Selected Tasks: {args.tasks}")
|
||||
|
||||
description_dict = {}
|
||||
if args.description_dict_path:
|
||||
with open(args.description_dict_path, "r") as f:
|
||||
description_dict = json.load(f)
|
||||
|
||||
success = []
|
||||
fail = []
|
||||
for prec in args.precision:
|
||||
prec_arg = parse_precision(prec, args.model)
|
||||
model_args = f"pretrained={args.pretrained},{prec_arg}"
|
||||
if len(args.model_args) > 0:
|
||||
model_args += args.model_args
|
||||
for task in args.tasks:
|
||||
task_names=task_map.get(task, task).split(',')
|
||||
num_fewshot = task_to_n_few_shots.get(task, args.num_fewshot)
|
||||
try:
|
||||
results = evaluator.simple_evaluate(
|
||||
model=args.model,
|
||||
model_args=model_args,
|
||||
tasks=task_names,
|
||||
num_fewshot=num_fewshot,
|
||||
batch_size=args.batch_size,
|
||||
max_batch_size=args.max_batch_size,
|
||||
device=args.device,
|
||||
no_cache=args.no_cache,
|
||||
limit=args.limit,
|
||||
description_dict=description_dict,
|
||||
decontamination_ngrams_path=args.decontamination_ngrams_path,
|
||||
check_integrity=args.check_integrity,
|
||||
write_out=args.write_out,
|
||||
output_base_path=args.output_base_path,
|
||||
)
|
||||
if len(results['results']) > 1:
|
||||
average = {}
|
||||
for _, subtask in results['results'].items():
|
||||
for metric, value in subtask.items():
|
||||
average[metric] = average.get(metric, []) + [value]
|
||||
for k, v in average.items():
|
||||
average[k] = sum(average[k]) / len(average[k]) if not k.endswith("_stderr") else 0
|
||||
results['results'][f"avg_{task}"] = average
|
||||
results['versions'][f"avg_{task}"] = 1
|
||||
|
||||
dumped = json.dumps(results, indent=2)
|
||||
print(dumped)
|
||||
|
||||
if args.output_path:
|
||||
dirname = os.path.dirname(args.output_path)
|
||||
if dirname:
|
||||
os.makedirs(dirname, exist_ok=True)
|
||||
with open(args.output_path, "w") as f:
|
||||
f.write(dumped)
|
||||
success.append(results)
|
||||
except Exception as e:
|
||||
fail.append(f"Job config of task={task}, precision={prec} failed. Error Message: {str(e)}")
|
||||
print(f"Job config of task={task}, precision={prec} failed. Error Message: {str(e)}")
|
||||
|
||||
## print all task summary
|
||||
print("Here are results of all successful tasks:")
|
||||
for results in success:
|
||||
print(results['config'])
|
||||
print(evaluator.make_table(results))
|
||||
|
||||
if len(fail) > 0:
|
||||
raise RuntimeError('\n'.join(fail))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in a new issue