patch bigdl-llm model to harness by binding instead of patch file (#9420)

* add run_llb.py

* fix args interpret

* modify outputs

* update workflow

* add license

* test mixed 4 bit

* update readme

* use autotokenizer

* add timeout

* refactor workflow file

* fix working directory

* fix env

* throw exception if some jobs failed

* improve terminal outputs

* Disable var which cause the run stuck

* fix unknown precision

* fix key error

* directly output config instead

* rm harness submodule
This commit is contained in:
Chen, Zhentao 2023-11-14 12:51:39 +08:00 committed by GitHub
parent 51d07a9fd8
commit d19ca21957
7 changed files with 347 additions and 257 deletions

View file

@ -20,25 +20,28 @@ on:
jobs:
llm-cpp-build:
uses: ./.github/workflows/llm-binary-build.yml
llm-nightly-harness-test:
llm-harness-evalution:
timeout-minutes: 1000
needs: llm-cpp-build
strategy:
fail-fast: false
matrix:
# include:
# python-version: "3.9"
# model_name: "stablelm-3b-4e1t"
# task: "arc"
# precision: "sym_int4" #options: sym_int4, fp4, nf4, mixed_4bit, fp8
python-version: ["3.9"]
model_name: [stablelm-3b-4e1t]
task: ["truthfulqa"]
precision: ["int4"]
precision: [sym_int4] #options: sym_int4, fp4, nf4, mixed_4bit, fp8
runs-on: [self-hosted, llm, accuracy, temp-arc01]
env:
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
ORIGIN_DIR: /mnt/disk1/models
HARNESS_HF_HOME: /mnt/disk1/harness_home
steps:
- name: Set model and dataset directories
shell: bash
run: |
echo "ORIGIN_DIR=/mnt/disk1/models" >> "$GITHUB_ENV"
echo "HARNESS_HF_HOME=/mnt/disk1/harness_home" >> "$GITHUB_ENV"
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
@ -60,16 +63,13 @@ jobs:
extra-dependency: "xpu"
- name: Install harness
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness/
shell: bash
run: |
cd python/llm/dev/benchmark/harness/
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
cd lm-evaluation-harness
git checkout e81d3cc
pip install -e .
git apply ../bigdl-llm.patch
cd ..
- name: Download models and datasets
shell: bash
@ -84,17 +84,21 @@ jobs:
wget -r -nH --no-verbose --cut-dirs=1 ${LLM_FTP_URL}/llm/${{ matrix.model_name }} -P ${ORIGIN_DIR}
fi
- name: Set datasets env
- name: Upgrade packages
shell: bash
run: |
echo "HF_HOME=$HARNESS_HF_HOME" >> "$GITHUB_ENV"
echo "HF_DATASETS=$HARNESS_HF_HOME/datasets" >> "$GITHUB_ENV"
echo "HF_DATASETS_CACHE=$HARNESS_HF_HOME/datasets" >> "$GITHUB_ENV"
pip install --upgrade transformers
- name: Run harness
shell: bash
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
env:
USE_XETLA: OFF
# SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS: 1
run: |
export USE_XETLA=OFF
export HF_HOME=${HARNESS_HF_HOME}
export HF_DATASETS=$HARNESS_HF_HOME/datasets
export HF_DATASETS_CACHE=$HARNESS_HF_HOME/datasets
source /opt/intel/oneapi/setvars.sh
cd python/llm/dev/benchmark/harness
python llb.py --model bigdl-llm --pretrained ${MODEL_PATH} --precision ${{ matrix.precision }} --device xpu --tasks ${{ matrix.task }} --output_dir results/${{ matrix.model_name }} --batch 1
python run_llb.py --model bigdl-llm --pretrained ${MODEL_PATH} --precision ${{ matrix.precision }} --device xpu --tasks ${{ matrix.task }} --batch_size 1 --no_cache

View file

@ -9,20 +9,18 @@ git clone https://github.com/EleutherAI/lm-evaluation-harness.git
cd lm-evaluation-harness
git checkout e81d3cc
pip install -e .
git apply ../bigdl-llm.patch
cd ..
```
## Run
run `python llb.py`. `llb.py` combines some arguments in `main.py` to make evalutions easier. The mapping of arguments is defined as a dict in [`llb.py`](llb.py).
run `python run_llb.py`. `run_llb.py` combines some arguments in `main.py` to make evalutions easier. The mapping of arguments is defined as a dict in [`llb.py`](llb.py).
### Evaluation on CPU
```python
python llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 int4 nf4 --device cpu --tasks hellaswag arc mmlu truthfulqa --output_dir results/output
python run_llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 sym_int4 nf4 --device cpu --tasks hellaswag arc mmlu truthfulqa --batch 1 --no_cache
```
### Evaluation on Intel GPU
```python
python llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 int4 nf4 --device xpu --tasks hellaswag arc mmlu truthfulqa --output_dir results/output
python run_llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 sym_int4 nf4 --device xpu --tasks hellaswag arc mmlu truthfulqa --batch 1 --no_cache
```
## Results
We follow [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to record our metrics, `acc_norm` for `hellaswag` and `arc_challenge`, `mc2` for `truthful_qa` and `acc` for `mmlu`. For `mmlu`, there are 57 subtasks which means users may need to average them manually to get final result.

View file

@ -1,151 +0,0 @@
diff --git a/lm_eval/models/__init__.py b/lm_eval/models/__init__.py
index 8ca27fac..6b581487 100644
--- a/lm_eval/models/__init__.py
+++ b/lm_eval/models/__init__.py
@@ -4,6 +4,7 @@ from . import anthropic_llms
from . import huggingface
from . import textsynth
from . import dummy
+from . import bigdl_llm
MODEL_REGISTRY = {
"hf": gpt2.HFLM,
@@ -15,6 +16,7 @@ MODEL_REGISTRY = {
"anthropic": anthropic_llms.AnthropicLM,
"textsynth": textsynth.TextSynthLM,
"dummy": dummy.DummyLM,
+ "bigdl-llm": bigdl_llm.BigDLLM
}
diff --git a/lm_eval/models/bigdl_llm.py b/lm_eval/models/bigdl_llm.py
new file mode 100644
index 00000000..74010da3
--- /dev/null
+++ b/lm_eval/models/bigdl_llm.py
@@ -0,0 +1,124 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+
+# this code is copied from llama2 example test, and added performance test
+import os
+import multiprocessing
+
+from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
+
+import torch
+from typing import Optional, Union
+from lm_eval.base import BaseLM
+
+from transformers import AutoTokenizer, LlamaTokenizer
+
+def _get_dtype(
+ dtype: Union[str, torch.dtype]
+) -> torch.dtype:
+ """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
+ if isinstance(dtype, str) and dtype != "auto":
+ # Convert `str` args torch dtype: `float16` -> `torch.float16`
+ _torch_dtype = getattr(torch, dtype)
+ else:
+ _torch_dtype = dtype
+ return _torch_dtype
+
+class BigDLLM(BaseLM):
+ def __init__(
+ self,
+ device="xpu",
+ pretrained="gpt2",
+ revision="main",
+ low_cpu_mem_usage=None,
+ subfolder=None,
+ tokenizer=None,
+ batch_size=1,
+ load_in_8bit: Optional[bool] = False,
+ trust_remote_code: Optional[bool] = False,
+ load_in_low_bit=None,
+ dtype: Optional[Union[str, torch.dtype]] = "auto",
+ ):
+ super().__init__()
+
+ assert isinstance(pretrained, str)
+ assert isinstance(batch_size, (int,str))
+ if 'xpu' in device:
+ import intel_extension_for_pytorch as ipex
+ model = AutoModelForCausalLM.from_pretrained(pretrained,
+ load_in_low_bit=load_in_low_bit,
+ optimize_model=True,
+ trust_remote_code=True,
+ use_cache=True,
+ torch_dtype=_get_dtype(dtype))
+ print(model) # print model to check precision
+ self._device = device
+ self.model = model.to(device)
+
+ self.tokenizer = AutoTokenizer.from_pretrained(pretrained, trust_remote_code=True)
+
+ # setup for automatic batch size detection
+ if batch_size == 'auto':
+ self.batch_size_per_gpu = batch_size
+ else:
+ self.batch_size_per_gpu = int(batch_size)
+
+ @property
+ def eot_token_id(self):
+ # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
+ return self.model.token_eos()
+
+ @property
+ def max_length(self):
+ return 2048 # TODO: how to get this from config
+
+ @property
+ def max_gen_toks(self):
+ return 256
+
+ @property
+ def batch_size(self):
+ # TODO: fix multi-gpu
+ return self.batch_size_per_gpu # * gpus
+
+ @property
+ def device(self):
+ # TODO: fix multi-gpu
+ return torch.device(self._device)
+
+ def tok_encode(self, string: str):
+ input_ids = self.tokenizer.encode(string)
+ return input_ids
+
+ def tok_decode(self, tokens):
+ return self.tokenizer.decode(output[0], skip_special_tokens=True)
+
+ def _model_call(self, inps):
+ """
+ inps: a torch tensor of shape [batch, sequence]
+ the size of sequence may vary from call to call
+
+ returns: a torch tensor of shape [batch, sequence, vocab] with the
+ logits returned from the model
+ """
+ with torch.inference_mode():
+ inps = inps.to(self.device)
+ res = self.model(inps)[0]
+ return res
+
+ def _model_generate(self, context, max_length, eos_token_id):
+ return self.model(context, max_tokens=max_length, stop=["Q:", "\n"], echo=True)
\ No newline at end of file

View file

@ -0,0 +1,121 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import multiprocessing
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
import torch
from typing import Optional, Union
from lm_eval.base import BaseLM
from transformers import AutoTokenizer, LlamaTokenizer
def _get_dtype(
dtype: Union[str, torch.dtype]
) -> torch.dtype:
"""Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
if isinstance(dtype, str) and dtype != "auto":
# Convert `str` args torch dtype: `float16` -> `torch.float16`
_torch_dtype = getattr(torch, dtype)
else:
_torch_dtype = dtype
return _torch_dtype
class BigDLLM(BaseLM):
def __init__(
self,
device="xpu",
pretrained="gpt2",
revision="main",
low_cpu_mem_usage=None,
subfolder=None,
tokenizer=None,
batch_size=1,
load_in_8bit: Optional[bool] = False,
trust_remote_code: Optional[bool] = False,
load_in_low_bit=None,
dtype: Optional[Union[str, torch.dtype]] = "auto",
):
super().__init__()
assert isinstance(pretrained, str)
assert isinstance(batch_size, (int,str))
if device == 'xpu':
import intel_extension_for_pytorch as ipex
model = AutoModelForCausalLM.from_pretrained(pretrained,
load_in_low_bit=load_in_low_bit,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
torch_dtype=_get_dtype(dtype))
print(model) # print model to check precision
self._device = device
self.model = model.to(device)
self.tokenizer = AutoTokenizer.from_pretrained(pretrained, trust_remote_code=True)
# setup for automatic batch size detection
if batch_size == 'auto':
self.batch_size_per_gpu = batch_size
else:
self.batch_size_per_gpu = int(batch_size)
@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self.model.token_eos()
@property
def max_length(self):
return 2048 # TODO: how to get this from config
@property
def max_gen_toks(self):
return 256
@property
def batch_size(self):
# TODO: fix multi-gpu
return self.batch_size_per_gpu # * gpus
@property
def device(self):
# TODO: fix multi-gpu
return torch.device(self._device)
def tok_encode(self, string: str):
input_ids = self.tokenizer.encode(string)
return input_ids
def tok_decode(self, tokens):
return self.tokenizer.decode(output[0], skip_special_tokens=True)
def _model_call(self, inps):
"""
inps: a torch tensor of shape [batch, sequence]
the size of sequence may vary from call to call
returns: a torch tensor of shape [batch, sequence, vocab] with the
logits returned from the model
"""
with torch.inference_mode():
inps = inps.to(self.device)
res = self.model(inps)[0]
return res
def _model_generate(self, context, max_length, eos_token_id):
return self.model(context, max_tokens=max_length, stop=["Q:", "\n"], echo=True)

View file

@ -0,0 +1,51 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from regex import match
task_map = dict(
hellaswag="hellaswag",
arc="arc_challenge",
truthfulqa="truthfulqa_mc",
mmlu="hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions"
)
task_to_n_few_shots = dict(
hellaswag=10,
arc=25,
truthfulqa=0,
mmlu=5
)
def parse_precision(precision, model="bigdl-llm"):
result = match(r"([a-zA-Z_]*)(\d+)", precision)
datatype = result.group(1)
bit = int(result.group(2))
if bit >= 16:
float_map = dict(
bf16="bfloat16",
fp16="float16",
fp32="float32"
)
return f"dtype={float_map[precision]}"
else:
if model == "hf-causal":
return f"bnb_type={precision}"
if model == "bigdl-llm":
return f"load_in_low_bit={precision}"
raise RuntimeError(f"invald precision {precision}")

View file

@ -1,82 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# this code is copied from llama2 example test, and added performance test
import argparse
import os
import subprocess
task_cmd = "--num_fewshot {} --tasks {}"
task_map = {
"hellaswag": task_cmd.format(10, "hellaswag"),
"arc": task_cmd.format(25, "arc_challenge"),
"truthfulqa": task_cmd.format(0, "truthfulqa_mc"),
"mmlu": task_cmd.format(5, "hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions")
}
prec_to_arg = {
"bigdl-llm": {
"int4": "load_in_low_bit=sym_int4",
"nf4": "load_in_low_bit=nf4",
"nf3": "load_in_low_bit=nf3",
"fp8": "load_in_low_bit=fp8",
"fp4": "load_in_low_bit=fp4",
"bf16": "dtype=bfloat16",
"fp16": "dtype=float16",
},
"hf-causal": {
"nf4": "bnb_type=nf4",
"bf16": "dtype=bfloat16",
"fp16": "dtype=float16",
}
}
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True, type=str)
parser.add_argument("--pretrained", required=True, type=str)
parser.add_argument("--precision", required=True, nargs='+', type=str)
parser.add_argument("--device", required=True, type=str)
parser.add_argument("--batch", default=1, type=int)
parser.add_argument("--tasks", required=True, nargs='+', type=str)
parser.add_argument("--output_dir", type=str)
args = parser.parse_args()
print(args.model)
print(args.tasks)
basic_cmd = "python lm-evaluation-harness/main.py --model {} --model_args pretrained={},{} --no_cache --device {} --batch_size {} {} --output_path {} "
os.makedirs(args.output_dir, exist_ok=True)
index = 1
total = len(args.precision) * len(args.tasks)
for prec in args.precision:
prec_arg = prec_to_arg[args.model][prec]
for task in args.tasks:
output_path = f"{args.model}_{prec}_{args.device}_{task}"
task_arg = task_map[task]
cmd_exec = basic_cmd.format(args.model, args.pretrained, prec_arg, args.device, args.batch,
task_arg, f"{args.output_dir}/{output_path}")
print(f"Running job {index}/{total}:\n{cmd_exec}")
index += 1
with open(f"{args.output_dir}/log_{output_path}.txt", "w") as f:
return_code = subprocess.call(cmd_exec, shell=True)
if return_code == 0:
print("Successful")
else:
print("Failed")
main()

View file

@ -0,0 +1,149 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import json
import logging
import os
from harness_to_leaderboard import *
from lm_eval import tasks, evaluator, utils, models
from bigdl_llm import BigDLLM
models.MODEL_REGISTRY['bigdl-llm'] = BigDLLM # patch bigdl-llm to harness
logging.getLogger("openai").setLevel(logging.WARNING)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True)
parser.add_argument("--model_args", default="")
parser.add_argument("--pretrained", required=True, type=str)
parser.add_argument("--tasks", required=True, nargs='+', type=str)
parser.add_argument("--precision", required=True, nargs='+', type=str)
parser.add_argument("--provide_description", action="store_true")
parser.add_argument("--num_fewshot", type=int, default=0)
parser.add_argument("--batch_size", type=str, default=None)
parser.add_argument(
"--max_batch_size",
type=int,
default=None,
help="Maximal batch size to try with --batch_size auto",
)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--output_path", default=None)
parser.add_argument(
"--limit",
type=float,
default=None,
help="Limit the number of examples per task. "
"If <1, limit is a percentage of the total number of examples.",
)
parser.add_argument("--data_sampling", type=float, default=None)
parser.add_argument("--no_cache", action="store_true")
parser.add_argument("--decontamination_ngrams_path", default=None)
parser.add_argument("--description_dict_path", default=None)
parser.add_argument("--check_integrity", action="store_true")
parser.add_argument("--write_out", action="store_true", default=False)
parser.add_argument("--output_base_path", type=str, default=None)
return parser.parse_args()
def main():
args = parse_args()
assert not args.provide_description # not implemented
if args.limit:
print(
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
# if args.tasks is None:
# task_names = tasks.ALL_TASKS
# else:
# task_names = utils.pattern_match(args.tasks.split(","), tasks.ALL_TASKS)
print(f"Selected Tasks: {args.tasks}")
description_dict = {}
if args.description_dict_path:
with open(args.description_dict_path, "r") as f:
description_dict = json.load(f)
success = []
fail = []
for prec in args.precision:
prec_arg = parse_precision(prec, args.model)
model_args = f"pretrained={args.pretrained},{prec_arg}"
if len(args.model_args) > 0:
model_args += args.model_args
for task in args.tasks:
task_names=task_map.get(task, task).split(',')
num_fewshot = task_to_n_few_shots.get(task, args.num_fewshot)
try:
results = evaluator.simple_evaluate(
model=args.model,
model_args=model_args,
tasks=task_names,
num_fewshot=num_fewshot,
batch_size=args.batch_size,
max_batch_size=args.max_batch_size,
device=args.device,
no_cache=args.no_cache,
limit=args.limit,
description_dict=description_dict,
decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity,
write_out=args.write_out,
output_base_path=args.output_base_path,
)
if len(results['results']) > 1:
average = {}
for _, subtask in results['results'].items():
for metric, value in subtask.items():
average[metric] = average.get(metric, []) + [value]
for k, v in average.items():
average[k] = sum(average[k]) / len(average[k]) if not k.endswith("_stderr") else 0
results['results'][f"avg_{task}"] = average
results['versions'][f"avg_{task}"] = 1
dumped = json.dumps(results, indent=2)
print(dumped)
if args.output_path:
dirname = os.path.dirname(args.output_path)
if dirname:
os.makedirs(dirname, exist_ok=True)
with open(args.output_path, "w") as f:
f.write(dumped)
success.append(results)
except Exception as e:
fail.append(f"Job config of task={task}, precision={prec} failed. Error Message: {str(e)}")
print(f"Job config of task={task}, precision={prec} failed. Error Message: {str(e)}")
## print all task summary
print("Here are results of all successful tasks:")
for results in success:
print(results['config'])
print(evaluator.make_table(results))
if len(fail) > 0:
raise RuntimeError('\n'.join(fail))
if __name__ == "__main__":
main()