* remove include and language option, select the corresponding dataset based on the model name in Run * change the nightly test time * change the nightly test time of harness and ppl * save the ppl result to json file * generate csv file and print table result * generate html * modify the way to get parent folder * update html in parent folder * add llm-ppl-summary and llm-ppl-summary-html * modify echo single result * remove download fp16.csv * change model name of PR * move ppl nightly related files to llm/test folder * reformat * seperate make_table from make_table_and_csv.py * separate make_csv from make_table_and_csv.py * update llm-ppl-html * remove comment * add Download fp16.results
		
			
				
	
	
	
	
		
			1.5 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.5 KiB
		
	
	
	
	
	
	
	
Perplexity
Perplexity (PPL) is one of the most common metrics for evaluating language models. This benchmark implementation was from transformers/perplexity and benchmark_patch_llm.py
HOW TO RUN
python run.py --model_path <path/to/model> --precisions sym_int4 fp4 mixed_fp4 sym_int8 fp8_e5m2 fp8_e4m3 mixed_fp8 --device xpu --datasets dataset_names --dataset_path <path/to/dataset> --language en
A more specific example to run perplexity on Llama2-7B using the default English datasets:
python run.py --model_path meta-llama/Llama-2-7b-chat-hf --precisions float16 sym_int4 --device xpu --language en
Note: We currently only support the
THUDM/LongBenchdataset
- If you want to test model perplexity on a few selected datasets from the 
LongBenchdataset, please use the format below.--datasets narrativeqa qasper ... - The 
languageargument will only take effect ifdatasetsisNone. The choices for this argument areen, zh, all, which stands for all the English datasets, all the Chinese datasets and all the datasets respectively during testing. - If you want to test perplexity on pre-downloaded datasets, please specify the 
<path/to/dataset>in thedataset_pathargument in your command. 
Summarize the results
"""python python make_table.py <input_dir> """