* Change dependency version for langchain uts * Downgrade pandas version instead; and update example readme accordingly
131 lines
4.8 KiB
Markdown
131 lines
4.8 KiB
Markdown
# Langchain examples
|
|
|
|
The examples here shows how to use langchain with `bigdl-llm`.
|
|
|
|
## Install bigdl-llm
|
|
Follow the instructions in [Install](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install).
|
|
|
|
## Install Required Dependencies for langchain examples.
|
|
|
|
```bash
|
|
pip install langchain==0.0.184
|
|
pip install -U chromadb==0.3.25
|
|
pip install -U pandas==2.0.3
|
|
pip install -U typing_extensions==4.5.0
|
|
```
|
|
|
|
Note that typing_extensions==4.5.0 is required, or you may encounter error `TypeError: dataclass_transform() got an unexpected keyword argument 'field_specifiers'` when running the examples.
|
|
|
|
|
|
## Convert Models using bigdl-llm
|
|
Follow the instructions in [Convert model](https://github.com/intel-analytics/BigDL/tree/main/python/llm#convert-model).
|
|
|
|
|
|
## Run the examples
|
|
|
|
### 1. Streaming Chat
|
|
|
|
```bash
|
|
python native_int4/streamchat.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -q QUESTION -t THREAD_NUM
|
|
```
|
|
arguments info:
|
|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
|
|
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
|
- `-q QUESTION`: question to ask. Default is `What is AI?`.
|
|
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
|
|
|
### 2. Question Answering over Docs
|
|
```bash
|
|
python native_int4/docqa.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -i DOC_PATH -q QUESTION -c CONTEXT_SIZE -t THREAD_NUM
|
|
```
|
|
arguments info:
|
|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model in above step
|
|
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
|
- `-i DOC_PATH`: **required**, path to the input document
|
|
- `-q QUESTION`: question to ask. Default is `What is AI?`.
|
|
- `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`.
|
|
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
|
|
|
### 3. Voice Assistant
|
|
> This example is adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant with only tiny code change.
|
|
|
|
Some extra dependencies are required to be installed for this example.
|
|
```bash
|
|
pip install SpeechRecognition
|
|
pip install pyttsx3
|
|
pip install PyAudio
|
|
pip install whisper.ai
|
|
pip install soundfile
|
|
```
|
|
|
|
```bash
|
|
python native_int4/voiceassistant.py -x MODEL_FAMILY -m CONVERTED_MODEL_PATH -t THREAD_NUM -c CONTEXT_SIZE
|
|
```
|
|
|
|
arguments info:
|
|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
|
|
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
|
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
|
- `-c CONTEXT_SIZE`: specify maximum context size. Default to be 512.
|
|
|
|
When you see output says
|
|
> listening now...
|
|
|
|
Please say something through your microphone (e.g. What is AI). The programe will automatically detect when you have completed your speech and recogize them.
|
|
|
|
#### Known Issues
|
|
The speech_recognition library may occasionally skip recording due to low volume. An alternative option is to save the recording in WAV format using `PyAudio` and read the file as an input. Here is an example using PyAudio:
|
|
```python
|
|
import pyaudio
|
|
import speech_recognition as sr
|
|
|
|
CHUNK = 1024
|
|
FORMAT = pyaudio.paInt16
|
|
CHANNELS = 1 # The desired number of input channels
|
|
RATE = 16000 # The desired rate (in Hz)
|
|
RECORD_SECONDS = 10 # Recording time (in second)
|
|
WAVE_OUTPUT_FILENAME = "/path/to/pyaudio_out.wav"
|
|
p = pyaudio.PyAudio()
|
|
|
|
stream = p.open(format=FORMAT,
|
|
channels=CHANNELS,
|
|
rate=RATE,
|
|
input=True,
|
|
frames_per_buffer=CHUNK)
|
|
|
|
print("*"*10, "Listening\n")
|
|
frames = []
|
|
data =0
|
|
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
|
|
data = stream.read(CHUNK) ## <class 'bytes'> ,exception_on_overflow = False
|
|
frames.append(data) ## <class 'list'>
|
|
print("*"*10, "Stop recording\n")
|
|
|
|
stream.stop_stream()
|
|
stream.close()
|
|
p.terminate()
|
|
|
|
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
|
|
wf.setnchannels(CHANNELS)
|
|
wf.setsampwidth(p.get_sample_size(FORMAT))
|
|
wf.setframerate(RATE)
|
|
wf.writeframes(b''.join(frames))
|
|
wf.close()
|
|
|
|
r = sr.Recognizer()
|
|
with sr.AudioFile(WAVE_OUTPUT_FILENAME) as source1:
|
|
audio = r.record(source1) # read the entire audio file
|
|
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
|
|
```
|
|
|
|
### 4. Math
|
|
|
|
This is an example using `LLMMathChain`. This example has been validated using [phoenix-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b).
|
|
|
|
```bash
|
|
python transformers_int4/math.py -m MODEL_PATH -q QUESTION
|
|
```
|
|
arguments info:
|
|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the transformers model
|
|
- `-q QUESTION`: question to ask. Default is `What is 13 raised to the .3432 power?`.
|
|
|