* Change dependency version for langchain uts * Downgrade pandas version instead; and update example readme accordingly
		
			
				
	
	
		
			131 lines
		
	
	
	
		
			4.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
	
		
			4.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# Langchain examples
 | 
						|
 | 
						|
The examples here shows how to use langchain with `bigdl-llm`.
 | 
						|
 | 
						|
## Install bigdl-llm
 | 
						|
Follow the instructions in [Install](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install).
 | 
						|
 | 
						|
## Install Required Dependencies for langchain examples. 
 | 
						|
 | 
						|
```bash
 | 
						|
pip install langchain==0.0.184
 | 
						|
pip install -U chromadb==0.3.25
 | 
						|
pip install -U pandas==2.0.3
 | 
						|
pip install -U typing_extensions==4.5.0
 | 
						|
```
 | 
						|
 | 
						|
Note that typing_extensions==4.5.0 is required, or you may encounter error `TypeError: dataclass_transform() got an unexpected keyword argument 'field_specifiers'` when running the examples. 
 | 
						|
 | 
						|
 | 
						|
## Convert Models using bigdl-llm
 | 
						|
Follow the instructions in [Convert model](https://github.com/intel-analytics/BigDL/tree/main/python/llm#convert-model).
 | 
						|
 | 
						|
 | 
						|
## Run the examples
 | 
						|
 | 
						|
### 1. Streaming Chat
 | 
						|
 | 
						|
```bash
 | 
						|
python native_int4/streamchat.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -q QUESTION -t THREAD_NUM
 | 
						|
```
 | 
						|
arguments info:
 | 
						|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
 | 
						|
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
 | 
						|
- `-q QUESTION`: question to ask. Default is `What is AI?`.
 | 
						|
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
 | 
						|
 | 
						|
### 2. Question Answering over Docs
 | 
						|
```bash
 | 
						|
python native_int4/docqa.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -i DOC_PATH -q QUESTION -c CONTEXT_SIZE -t THREAD_NUM
 | 
						|
```
 | 
						|
arguments info:
 | 
						|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model in above step
 | 
						|
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
 | 
						|
- `-i DOC_PATH`: **required**, path to the input document
 | 
						|
- `-q QUESTION`: question to ask. Default is `What is AI?`.
 | 
						|
- `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`.
 | 
						|
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
 | 
						|
 | 
						|
### 3. Voice Assistant
 | 
						|
> This example is adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant with only tiny code change.
 | 
						|
 | 
						|
Some extra dependencies are required to be installed for this example.
 | 
						|
```bash
 | 
						|
pip install SpeechRecognition
 | 
						|
pip install pyttsx3
 | 
						|
pip install PyAudio
 | 
						|
pip install whisper.ai
 | 
						|
pip install soundfile
 | 
						|
```
 | 
						|
 | 
						|
```bash
 | 
						|
python native_int4/voiceassistant.py -x MODEL_FAMILY -m CONVERTED_MODEL_PATH -t THREAD_NUM -c CONTEXT_SIZE
 | 
						|
```
 | 
						|
 | 
						|
arguments info:
 | 
						|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
 | 
						|
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
 | 
						|
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
 | 
						|
- `-c CONTEXT_SIZE`: specify maximum context size. Default to be 512.
 | 
						|
 | 
						|
When you see output says
 | 
						|
> listening now...
 | 
						|
 | 
						|
Please say something through your microphone (e.g. What is AI). The programe will automatically detect when you have completed your speech and recogize them.
 | 
						|
 | 
						|
#### Known Issues
 | 
						|
The speech_recognition library may occasionally skip recording due to low volume. An alternative option is to save the recording in WAV format using `PyAudio` and read the file as an input. Here is an example using PyAudio:
 | 
						|
```python
 | 
						|
import pyaudio
 | 
						|
import speech_recognition as sr
 | 
						|
 | 
						|
CHUNK = 1024
 | 
						|
FORMAT = pyaudio.paInt16
 | 
						|
CHANNELS = 1                # The desired number of input channels
 | 
						|
RATE = 16000                # The desired rate (in Hz)
 | 
						|
RECORD_SECONDS = 10         # Recording time (in second)
 | 
						|
WAVE_OUTPUT_FILENAME = "/path/to/pyaudio_out.wav"
 | 
						|
p = pyaudio.PyAudio()
 | 
						|
                
 | 
						|
stream = p.open(format=FORMAT,
 | 
						|
                channels=CHANNELS,
 | 
						|
                rate=RATE,
 | 
						|
                input=True,
 | 
						|
                frames_per_buffer=CHUNK)
 | 
						|
 | 
						|
print("*"*10, "Listening\n")
 | 
						|
frames = []
 | 
						|
data =0
 | 
						|
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
 | 
						|
  data = stream.read(CHUNK)  ## <class 'bytes'> ,exception_on_overflow = False
 | 
						|
  frames.append(data)   ## <class 'list'>
 | 
						|
print("*"*10, "Stop recording\n")
 | 
						|
 | 
						|
stream.stop_stream()
 | 
						|
stream.close()
 | 
						|
p.terminate()
 | 
						|
 | 
						|
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
 | 
						|
wf.setnchannels(CHANNELS)
 | 
						|
wf.setsampwidth(p.get_sample_size(FORMAT))
 | 
						|
wf.setframerate(RATE)
 | 
						|
wf.writeframes(b''.join(frames))
 | 
						|
wf.close()
 | 
						|
 | 
						|
r = sr.Recognizer()
 | 
						|
with sr.AudioFile(WAVE_OUTPUT_FILENAME) as source1:
 | 
						|
    audio = r.record(source1)  # read the entire audio file   
 | 
						|
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
 | 
						|
```
 | 
						|
 | 
						|
### 4. Math
 | 
						|
 | 
						|
This is an example using `LLMMathChain`. This example has been validated using [phoenix-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b).
 | 
						|
 | 
						|
```bash
 | 
						|
python transformers_int4/math.py -m MODEL_PATH -q QUESTION
 | 
						|
```
 | 
						|
arguments info:
 | 
						|
- `-m CONVERTED_MODEL_PATH`: **required**, path to the transformers model
 | 
						|
- `-q QUESTION`: question to ask. Default is `What is 13 raised to the .3432 power?`.
 | 
						|
 |