* Quickstart index.rst -> index.md * Update for Linux Install Quickstart * Update md docs for Windows Install QuickStart * Small fix * Add blank lines * Update mddocs for llama cpp quickstart * Update mddocs for llama3 llama-cpp and ollama quickstart * Update mddocs for ollama quickstart * Update mddocs for openwebui quickstart * Update mddocs for privateGPT quickstart * Update mddocs for vllm quickstart * Small fix * Update mddocs for text-generation-webui quickstart * Update for video links
171 lines
6 KiB
Markdown
171 lines
6 KiB
Markdown
# Run Ollama with IPEX-LLM on Intel GPU
|
|
|
|
[ollama/ollama](https://github.com/ollama/ollama) is popular framework designed to build and run language models on a local machine; you can now use the C++ interface of [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend for `ollama` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*.
|
|
|
|
See the demo of running LLaMA2-7B on Intel Arc GPU below.
|
|
|
|
[](https://llm-assets.readthedocs.io/en/latest/_images/ollama-linux-arc.mp4)
|
|
|
|
> [!NOTE]
|
|
> `ipex-llm[cpp]==2.5.0b20240527` is consistent with [v0.1.34](https://github.com/ollama/ollama/releases/tag/v0.1.34) of ollama.
|
|
>
|
|
> Our current version is consistent with [v0.1.39](https://github.com/ollama/ollama/releases/tag/v0.1.39) of ollama.
|
|
|
|
## Quickstart
|
|
|
|
### 1 Install IPEX-LLM for Ollama
|
|
|
|
IPEX-LLM's support for `ollama` now is available for Linux system and Windows system.
|
|
|
|
Visit [Run llama.cpp with IPEX-LLM on Intel GPU Guide](./llama_cpp_quickstart.md), and follow the instructions in section [Prerequisites](./llama_cpp_quickstart.md#0-prerequisites) to setup and section [Install IPEX-LLM cpp](./llama_cpp_quickstart.md#1-install-ipex-llm-for-llamacpp) to install the IPEX-LLM with Ollama binaries.
|
|
|
|
**After the installation, you should have created a conda environment, named `llm-cpp` for instance, for running `ollama` commands with IPEX-LLM.**
|
|
|
|
### 2. Initialize Ollama
|
|
|
|
Activate the `llm-cpp` conda environment and initialize Ollama by executing the commands below. A symbolic link to `ollama` will appear in your current directory.
|
|
|
|
- For **Linux users**:
|
|
|
|
```bash
|
|
conda activate llm-cpp
|
|
init-ollama
|
|
```
|
|
|
|
- For **Windows users**:
|
|
|
|
Please run the following command with **administrator privilege in Miniforge Prompt**.
|
|
|
|
```cmd
|
|
conda activate llm-cpp
|
|
init-ollama.bat
|
|
```
|
|
|
|
> [!NOTE]
|
|
> If you have installed higher version `ipex-llm[cpp]` and want to upgrade your ollama binary file, don't forget to remove old binary files first and initialize again with `init-ollama` or `init-ollama.bat`.
|
|
|
|
**Now you can use this executable file by standard ollama's usage.**
|
|
|
|
### 3 Run Ollama Serve
|
|
|
|
You may launch the Ollama service as below:
|
|
|
|
- For **Linux users**:
|
|
|
|
```bash
|
|
export OLLAMA_NUM_GPU=999
|
|
export no_proxy=localhost,127.0.0.1
|
|
export ZES_ENABLE_SYSMAN=1
|
|
source /opt/intel/oneapi/setvars.sh
|
|
export SYCL_CACHE_PERSISTENT=1
|
|
|
|
./ollama serve
|
|
```
|
|
|
|
- For **Windows users**:
|
|
|
|
Please run the following command in Miniforge Prompt.
|
|
|
|
```cmd
|
|
set OLLAMA_NUM_GPU=999
|
|
set no_proxy=localhost,127.0.0.1
|
|
set ZES_ENABLE_SYSMAN=1
|
|
set SYCL_CACHE_PERSISTENT=1
|
|
|
|
ollama serve
|
|
```
|
|
|
|
> [!NOTE]
|
|
> Please set environment variable `OLLAMA_NUM_GPU` to `999` to make sure all layers of your model are running on Intel GPU, otherwise, some layers may run on CPU.
|
|
|
|
> [!TIP]
|
|
> If your local LLM is running on Intel Arc™ A-Series Graphics with Linux OS (Kernel 6.2), it is recommended to additionaly set the following environment variable for optimal performance before executing `ollama serve`:
|
|
>
|
|
> ```bash
|
|
> export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
|
> ```
|
|
|
|
> [!NOTE]
|
|
> To allow the service to accept connections from all IP addresses, use `OLLAMA_HOST=0.0.0.0 ./ollama serve` instead of just `./ollama serve`.
|
|
|
|
The console will display messages similar to the following:
|
|
|
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/ollama_serve.png" target="_blank">
|
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_serve.png" width=100%; />
|
|
</a>
|
|
|
|
|
|
### 4 Pull Model
|
|
Keep the Ollama service on and open another terminal and run `./ollama pull <model_name>` in Linux (`ollama.exe pull <model_name>` in Windows) to automatically pull a model. e.g. `dolphin-phi:latest`:
|
|
|
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/ollama_pull.png" target="_blank">
|
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_pull.png" width=100%; />
|
|
</a>
|
|
|
|
|
|
### 5 Using Ollama
|
|
|
|
#### Using Curl
|
|
|
|
Using `curl` is the easiest way to verify the API service and model. Execute the following commands in a terminal. **Replace the <model_name> with your pulled
|
|
model**, e.g. `dolphin-phi`.
|
|
|
|
- For **Linux users**:
|
|
|
|
```bash
|
|
curl http://localhost:11434/api/generate -d '
|
|
{
|
|
"model": "<model_name>",
|
|
"prompt": "Why is the sky blue?",
|
|
"stream": false
|
|
}'
|
|
```
|
|
|
|
- For **Windows users**:
|
|
|
|
Please run the following command in Miniforge Prompt.
|
|
|
|
```cmd
|
|
curl http://localhost:11434/api/generate -d "
|
|
{
|
|
\"model\": \"<model_name>\",
|
|
\"prompt\": \"Why is the sky blue?\",
|
|
\"stream\": false
|
|
}"
|
|
```
|
|
|
|
#### Using Ollama Run GGUF models
|
|
|
|
Ollama supports importing GGUF models in the Modelfile, for example, suppose you have downloaded a `mistral-7b-instruct-v0.1.Q4_K_M.gguf` from [Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/tree/main), then you can create a file named `Modelfile`:
|
|
|
|
```bash
|
|
FROM ./mistral-7b-instruct-v0.1.Q4_K_M.gguf
|
|
TEMPLATE [INST] {{ .Prompt }} [/INST]
|
|
PARAMETER num_predict 64
|
|
```
|
|
|
|
Then you can create the model in Ollama by `ollama create example -f Modelfile` and use `ollama run` to run the model directly on console.
|
|
|
|
- For **Linux users**:
|
|
|
|
```bash
|
|
export no_proxy=localhost,127.0.0.1
|
|
./ollama create example -f Modelfile
|
|
./ollama run example
|
|
```
|
|
|
|
- For **Windows users**:
|
|
|
|
Please run the following command in Miniforge Prompt.
|
|
|
|
```cmd
|
|
set no_proxy=localhost,127.0.0.1
|
|
ollama create example -f Modelfile
|
|
ollama run example
|
|
```
|
|
|
|
An example process of interacting with model with `ollama run example` looks like the following:
|
|
|
|
<a href="https://llm-assets.readthedocs.io/en/latest/_images/ollama_gguf_demo_image.png" target="_blank">
|
|
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_gguf_demo_image.png" width=100%; />
|
|
</a>
|