ipex-llm/docs/readthedocs/source/doc/PythonAPI/DLlib/learningrate-Scheduler.md
Shengsheng Huang f2e4c40cee change the readthedocs theme and reorg the sections (#6056)
* refactor toc

* refactor toc

* Change to pydata-sphinx-theme and update packages requirement list for ReadtheDocs

* Remove customized css for old theme

* Add index page to each top bar section and limit dropdown maximum to be 4

* Use js to change 'More' to 'Libraries'

* Add custom.css to conf.py for further css changes

* Add BigDL logo and search bar

* refactor toc

* refactor toc and add overview

* refactor toc and add overview

* refactor toc and add overview

* refactor get started

* add paper and video section

* add videos

* add grid columns in landing page

* add document roadmap to index

* reapply search bar and github icon commit

* reorg orca and chronos sections

* Test: weaken ads by js

* update: change left attrbute

* update: add comments

* update: change opacity to 0.7

* Remove useless theme template override for old theme

* Add sidebar releases component in the home page

* Remove sidebar search and restore top nav search button

* Add BigDL handouts

* Add back to homepage button to pages except from the home page

* Update releases contents & styles in left sidebar

* Add version badge to the top bar

* Test: weaken ads by js

* update: add comments

* remove landing page contents

* rfix chronos install

* refactor install

* refactor chronos section titles

* refactor nano index

* change chronos landing

* revise chronos landing page

* add document navigator to nano landing page

* revise install landing page

* Improve css of versions in sidebar

* Make handouts image pointing to a page in new tab

* add win guide to install

* add dliib installation

* revise title bar

* rename index files

* add index page for user guide

* add dllib and orca API

* update user guide landing page

* refactor side bar

* Remove extra style configuration of card components & make different card usage consistent

* Remove extra styles for Nano how-to guides

* Remove extra styles for Chronos how-to guides

* Remove dark mode for now

* Update index page description

* Add decision tree for choosing BigDL libraries in index page

* add dllib models api, revise core layers formats

* Change primary & info color in light mode

* Restyle card components

* Restructure Chronos landing page

* Update card style

* Update BigDL library selection decision tree

* Fix failed Chronos tutorials filter

* refactor PPML documents

* refactor and add friesian documents

* add friesian arch diagram

* update landing pages and fill key features guide index page

* Restyle link card component

* Style video frames in PPML sections

* Adjust Nano landing page

* put api docs to the last in index for convinience

* Make badge horizontal padding smaller & small changes

* Change the second letter of all header titles to be small capitalizd

* Small changes on Chronos index page

* Revise decision tree to make it smaller

* Update: try to change the position of ads.

* Bugfix: deleted nonexist file config

* Update: update ad JS/CSS/config

* Update: change ad.

* Update: delete my template and change files.

* Update: change chronos installation table color.

* Update: change table font color to --pst-color-primary-text

* Remove old contents in landing page sidebar

* Restyle badge for usage in card footer again

* Add quicklinks template on landing page sidebar

* add quick links

* Add scala logo

* move tf, pytorch out of the link

* change orca key features cards

* fix typo

* fix a mistake in wording

* Restyle badge for card footer

* Update decision tree

* Remove useless html templates

* add more api docs and update tutorials in dllib

* update chronos install using new style

* merge changes in nano doc from master

* fix quickstart links in sidebar quicklinks

* Make tables responsive

* Fix overflow in api doc

* Fix list indents problems in [User guide] section

* Further fixes to nested bullets contents in [User Guide] section

* Fix strange title in Nano 5-min doc

* Fix list indent problems in [DLlib] section

* Fix misnumbered list problems and other small fixes for [Chronos] section

* Fix list indent problems and other small fixes for [Friesian] section

* Fix list indent problem and other small fixes for [PPML] section

* Fix list indent problem for developer guide

* Fix list indent problem for [Cluster Serving] section

* fix dllib links

* Fix wrong relative link in section landing page

Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
Co-authored-by: Juntao Luo <1072087358@qq.com>
2022-10-18 15:35:31 +08:00

441 lines
12 KiB
Markdown

# Learning Rate Scheduler
--------
## Poly ##
**Scala:**
```scala
val lrScheduler = Poly(power=0.5, maxIteration=1000)
```
**Python:**
```python
lr_scheduler = Poly(power=0.5, max_iteration=1000, bigdl_type="float")
```
A learning rate decay policy, where the effective learning rate follows a polynomial decay, to be zero by the max_iteration. Calculation: base_lr (1 - iter/maxIteration) `^` (power)
`power` coeffient of decay, refer to calculation formula
`maxIteration` max iteration when lr becomes zero
**Scala example:**
```scala
import com.intel.analytics.bigdl.dllib.optim.SGD._
import com.intel.analytics.bigdl.dllib.optim._
import com.intel.analytics.bigdl.dllib.tensor.{Storage, Tensor}
import com.intel.analytics.bigdl.dllib.tensor.TensorNumericMath.TensorNumeric.NumericFloat
import com.intel.analytics.bigdl.dllib.utils.T
val optimMethod = new SGD[Double](0.1)
optimMethod.learningRateSchedule = Poly(3, 100)
def feval(x: Tensor[Double]): (Double, Tensor[Double]) = {
return (0.1, Tensor[Double](Storage(Array(1.0, 1.0))))
}
val x = Tensor[Double](Storage(Array(10.0, 10.0)))
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.1
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.0970299
```
**Python example:**
```python
optim_method = SGD(0.1)
optimMethod.learningRateSchedule = Poly(3, 100)
```
## Default ##
It is the default learning rate schedule. For each iteration, the learning rate would update with the following formula:
l_{n + 1} = l / (1 + n * learning_rate_decay) where `l` is the initial learning rate
**Scala:**
```scala
val lrScheduler = Default()
```
**Python:**
```python
lr_scheduler = Default()
```
**Scala example:**
```scala
val optimMethod = new SGD[Double](0.1, 0.1)
def feval(x: Tensor[Double]): (Double, Tensor[Double]) = {
return (0.1, Tensor[Double](Storage(Array(1.0, 1.0))))
}
val x = Tensor[Double](Storage(Array(10.0, 10.0)))
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.1
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.09090909090909091
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.08333333333333334
```
**Python example:**
```python
optimMethod = SGD(leaningrate_schedule=Default())
```
## NaturalExp ##
A learning rate schedule, which rescale the learning rate by exp ( -decay_rate * iter / decay_step ) referring to tensorflow's learning rate decay # natural_exp_decay
`decay_step` how often to apply decay
`gamma` the decay rate. e.g. 0.96
**Scala:**
```scala
val learningRateScheduler = NaturalExp(1, 1)
```
**Scala example:**
```scala
val optimMethod = new SGD[Double](0.1)
optimMethod.learningRateSchedule = NaturalExp(1, 1)
def feval(x: Tensor[Double]): (Double, Tensor[Double]) = {
(0.1, Tensor[Double](Storage(Array(1.0, 1.0))))
}
val x = Tensor[Double](Storage(Array(10.0, 10.0)))
val state = T("epoch" -> 0, "evalCounter" -> 0)
optimMethod.state = state
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.1
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.036787944117144235
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.013533528323661271
```
## Exponential ##
A learning rate schedule, which rescale the learning rate by lr_{n + 1} = lr * decayRate `^` (iter / decayStep)
`decayStep` the inteval for lr decay
`decayRate` decay rate
`stairCase` if true, iter / decayStep is an integer division and the decayed learning rate follows a staircase function.
**Scala:**
```scala
val learningRateSchedule = Exponential(10, 0.96)
```
**Python:**
```python
exponential = Exponential(100, 0.1)
```
**Scala example:**
```scala
val optimMethod = new SGD[Double](0.05)
optimMethod.learningRateSchedule = Exponential(10, 0.96)
def feval(x: Tensor[Double]): (Double, Tensor[Double]) = {
(0.1, Tensor[Double](Storage(Array(1.0, 1.0))))
}
val x = Tensor[Double](Storage(Array(10.0, 10.0)))
val state = T("epoch" -> 0, "evalCounter" -> 0)
optimMethod.state = state
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.05
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.049796306069892535
```
**Python example:**
```python
optimMethod = SGD(leaningrate_schedule=Exponential(100, 0.1))
```
## Plateau ##
Plateau is the learning rate schedule when a metric has stopped improving. Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. It monitors a quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced.
`monitor` quantity to be monitored, can be Loss or score
`factor` factor by which the learning rate will be reduced. new_lr = lr * factor
`patience` number of epochs with no improvement after which learning rate will be reduced.
`mode` one of {min, max}. In min mode, lr will be reduced when the quantity monitored has stopped decreasing;
in max mode it will be reduced when the quantity monitored has stopped increasing
`epsilon` threshold for measuring the new optimum, to only focus on significant changes.
`cooldown` number of epochs to wait before resuming normal operation after lr has been reduced.
`minLr` lower bound on the learning rate.
**Scala:**
```scala
val learningRateSchedule = Plateau(monitor="score", factor=0.1, patience=10, mode="min", epsilon=1e-4f, cooldown=0, minLr=0)
```
**Python:**
```python
plateau = Plateau("score", factor=0.1, patience=10, mode="min", epsilon=1e-4, cooldown=0, minLr=0)
```
**Scala example:**
```scala
val optimMethod = new SGD[Double](0.05)
optimMethod.learningRateSchedule = Plateau(monitor="score", factor=0.1, patience=10, mode="min", epsilon=1e-4f, cooldown=0, minLr=0)
def feval(x: Tensor[Double]): (Double, Tensor[Double]) = {
(0.1, Tensor[Double](Storage(Array(1.0, 1.0))))
}
val x = Tensor[Double](Storage(Array(10.0, 10.0)))
val state = T("epoch" -> 0, "evalCounter" -> 0)
optimMethod.state = state
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
```
**Python example:**
```python
optimMethod = SGD(leaningrate_schedule=Plateau("score"))
```
## Warmup ##
A learning rate gradual increase policy, where the effective learning rate increase delta after each iteration. Calculation: base_lr + delta * iteration
`delta` increase amount after each iteration
**Scala:**
```scala
val learningRateSchedule = Warmup(delta = 0.05)
```
**Python:**
```python
warmup = Warmup(delta=0.05)
```
**Scala example:**
```scala
val lrSchedules = new SequentialSchedule(100)
lrSchedules.add(Warmup(0.3), 3).add(Poly(3, 100), 100)
val optimMethod = new SGD[Double](learningRate = 0.1, learningRateSchedule = lrSchedules)
def feval(x: Tensor[Double]): (Double, Tensor[Double]) = {
return (0.1, Tensor[Double](Storage(Array(1.0, 1.0))))
}
val x = Tensor[Double](Storage(Array(10.0, 10.0)))
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.1
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.4
```
**Python example:**
```python
optimMethod = SGD(leaningrate_schedule=Warmup(0.05))
```
## SequentialSchedule ##
A learning rate scheduler which can stack several learning rate schedulers.
`iterationPerEpoch` iteration numbers per epoch
**Scala:**
```scala
val learningRateSchedule = SequentialSchedule(iterationPerEpoch=100)
```
**Python:**
```python
sequentialSchedule = SequentialSchedule(iteration_per_epoch=5)
```
**Scala example:**
```scala
val lrSchedules = new SequentialSchedule(100)
lrSchedules.add(Warmup(0.3), 3).add(Poly(3, 100), 100)
val optimMethod = new SGD[Double](learningRate = 0.1, learningRateSchedule = lrSchedules)
def feval(x: Tensor[Double]): (Double, Tensor[Double]) = {
return (0.1, Tensor[Double](Storage(Array(1.0, 1.0))))
}
val x = Tensor[Double](Storage(Array(10.0, 10.0)))
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.1
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.4
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.7
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-1.0
optimMethod.optimize(feval, x)
> print(optimMethod.learningRateSchedule.currentRate)
-0.9702989999999999
```
**Python example:**
```python
sequentialSchedule = SequentialSchedule(5)
poly = Poly(0.5, 2)
sequentialSchedule.add(poly, 5)
```
## EpochDecay ##
**Scala:**
```scala
def decay(epoch: Int): Double =
if (epoch >= 1) 2.0 else if (epoch >= 2) 1.0 else 0.0
val learningRateSchedule = EpochDecay(decay)
```
It is an epoch decay learning rate schedule. The learning rate decays through a function argument on number of run epochs l_{n + 1} = l_{n} * 0.1 `^` decayType(epoch)
`decayType` is a function with number of run epochs as the argument
**Scala example:**
```scala
def decay(epoch: Int): Double =
if (epoch == 1) 2.0 else if (epoch == 2) 1.0 else 0.0
val optimMethod = new SGD[Double](1000)
optimMethod.learningRateSchedule = EpochDecay(decay)
def feval(x: Tensor[Double]): (Double, Tensor[Double]) = {
return (0.1, Tensor[Double](Storage(Array(1.0, 1.0))))
}
val x = Tensor[Double](Storage(Array(10.0, 10.0)))
val state = T("epoch" -> 0)
for(e <- 1 to 3) {
state("epoch") = e
optimMethod.state = state
optimMethod.optimize(feval, x)
if(e <= 1) {
assert(optimMethod.learningRateSchedule.currentRate==10)
} else if (e <= 2) {
assert(optimMethod.learningRateSchedule.currentRate==100)
} else {
assert(optimMethod.learningRateSchedule.currentRate==1000)
}
}
```
## Regime ##
A structure to specify hyper parameters by start epoch and end epoch. Usually work with [[EpochSchedule]].
`startEpoch` start epoch
`endEpoch` end epoch
`config` config table contains hyper parameters
## EpochSchedule ##
A learning rate schedule which configure the learning rate according to some pre-defined [[Regime]]. If the running epoch is within the interval of a regime `r` [r.startEpoch, r.endEpoch], then the learning
rate will take the "learningRate" in r.config.
`regimes` an array of pre-defined [[Regime]].
**Scala:**
```scala
val regimes: Array[Regime] = Array(
Regime(1, 3, T("learningRate" -> 1e-2, "weightDecay" -> 2e-4)),
Regime(4, 7, T("learningRate" -> 5e-3, "weightDecay" -> 2e-4)),
Regime(8, 10, T("learningRate" -> 1e-3, "weightDecay" -> 0.0))
)
val learningRateScheduler = EpochSchedule(regimes)
```
**Scala example:**
```scala
val regimes: Array[Regime] = Array(
Regime(1, 3, T("learningRate" -> 1e-2, "weightDecay" -> 2e-4)),
Regime(4, 7, T("learningRate" -> 5e-3, "weightDecay" -> 2e-4)),
Regime(8, 10, T("learningRate" -> 1e-3, "weightDecay" -> 0.0))
)
val state = T("epoch" -> 0)
val optimMethod = new SGD[Double](0.1)
optimMethod.learningRateSchedule = EpochSchedule(regimes)
def feval(x: Tensor[Double]): (Double, Tensor[Double]) = {
return (0.1, Tensor[Double](Storage(Array(1.0, 1.0))))
}
val x = Tensor[Double](Storage(Array(10.0, 10.0)))
for(e <- 1 to 10) {
state("epoch") = e
optimMethod.state = state
optimMethod.optimize(feval, x)
if(e <= 3) {
assert(optimMethod.learningRateSchedule.currentRate==-1e-2)
assert(optimMethod.weightDecay==2e-4)
} else if (e <= 7) {
assert(optimMethod.learningRateSchedule.currentRate==-5e-3)
assert(optimMethod.weightDecay==2e-4)
} else if (e <= 10) {
assert(optimMethod.learningRateSchedule.currentRate==-1e-3)
assert(optimMethod.weightDecay==0.0)
}
}
```
## EpochStep ##
A learning rate schedule which rescale the learning rate by `gamma` for each `stepSize` epochs.
`stepSize` For how many epochs to update the learning rate once
`gamma` the rescale factor
**Scala:**
```scala
val learningRateScheduler = EpochStep(1, 0.5)
```
**Scala example:**
```scala
val optimMethod = new SGD[Double](0.1)
optimMethod.learningRateSchedule = EpochStep(1, 0.5)
def feval(x: Tensor[Double]): (Double, Tensor[Double]) = {
(0.1, Tensor[Double](Storage(Array(1.0, 1.0))))
}
val x = Tensor[Double](Storage(Array(10.0, 10.0)))
val state = T("epoch" -> 0)
for(e <- 1 to 10) {
state("epoch") = e
optimMethod.state = state
optimMethod.optimize(feval, x)
assert(optimMethod.learningRateSchedule.currentRate==(-0.1 * Math.pow(0.5, e)))
}
```