* Update LangChain examples to use upstream * Update README and fix links * Update LangChain CPU examples to use upstream * Update LangChain CPU voice_assistant example * Update CPU README * Update GPU README * Remove GPU Langchain vLLM example and fix comments * Change langchain -> LangChain * Add reference for both upstream llms and embeddings * Fix comments * Fix comments * Fix comments * Fix comments * Fix comment
		
			
				
	
	
		
			169 lines
		
	
	
	
		
			4.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			169 lines
		
	
	
	
		
			4.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# Langchain Example
 | 
						|
 | 
						|
The examples in this folder shows how to use [LangChain](https://www.langchain.com/) with `ipex-llm` on Intel GPU.
 | 
						|
 | 
						|
> [!NOTE]
 | 
						|
> Please refer [here](https://python.langchain.com/docs/integrations/llms/ipex_llm) for upstream LangChain LLM documentation with ipex-llm and [here](https://python.langchain.com/docs/integrations/text_embedding/ipex_llm_gpu/) for upstream LangChain embedding documentation with ipex-llm.
 | 
						|
 | 
						|
## 0. Requirements
 | 
						|
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#requirements) for more information.
 | 
						|
 | 
						|
## 1. Install
 | 
						|
 | 
						|
### 1.1 Installation on Linux
 | 
						|
We suggest using conda to manage environment:
 | 
						|
```bash
 | 
						|
conda create -n llm python=3.11
 | 
						|
conda activate llm
 | 
						|
 | 
						|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
						|
```
 | 
						|
 | 
						|
### 1.2 Installation on Windows
 | 
						|
We suggest using conda to manage environment:
 | 
						|
```bash
 | 
						|
conda create -n llm python=3.11 libuv
 | 
						|
conda activate llm
 | 
						|
 | 
						|
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
						|
```
 | 
						|
 | 
						|
## 2. Configures OneAPI environment variables for Linux
 | 
						|
 | 
						|
> [!NOTE]
 | 
						|
> Skip this step if you are running on Windows.
 | 
						|
 | 
						|
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
 | 
						|
 | 
						|
```bash
 | 
						|
source /opt/intel/oneapi/setvars.sh
 | 
						|
```
 | 
						|
 | 
						|
## 3. Runtime Configurations
 | 
						|
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 | 
						|
### 3.1 Configurations for Linux
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
						|
 | 
						|
```bash
 | 
						|
export USE_XETLA=OFF
 | 
						|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
						|
export SYCL_CACHE_PERSISTENT=1
 | 
						|
```
 | 
						|
 | 
						|
</details>
 | 
						|
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel Data Center GPU Max Series</summary>
 | 
						|
 | 
						|
```bash
 | 
						|
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
						|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
						|
export SYCL_CACHE_PERSISTENT=1
 | 
						|
export ENABLE_SDP_FUSION=1
 | 
						|
```
 | 
						|
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
						|
</details>
 | 
						|
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel iGPU</summary>
 | 
						|
 | 
						|
```bash
 | 
						|
export SYCL_CACHE_PERSISTENT=1
 | 
						|
export BIGDL_LLM_XMX_DISABLED=1
 | 
						|
```
 | 
						|
 | 
						|
</details>
 | 
						|
 | 
						|
### 3.2 Configurations for Windows
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel iGPU</summary>
 | 
						|
 | 
						|
```cmd
 | 
						|
set SYCL_CACHE_PERSISTENT=1
 | 
						|
set BIGDL_LLM_XMX_DISABLED=1
 | 
						|
```
 | 
						|
 | 
						|
</details>
 | 
						|
 | 
						|
<details>
 | 
						|
 | 
						|
<summary>For Intel Arc™ A-Series Graphics</summary>
 | 
						|
 | 
						|
```cmd
 | 
						|
set SYCL_CACHE_PERSISTENT=1
 | 
						|
```
 | 
						|
 | 
						|
</details>
 | 
						|
 | 
						|
> [!NOTE]
 | 
						|
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
						|
 | 
						|
## 4. Run examples with LangChain
 | 
						|
 | 
						|
### 4.1. Example: Streaming Chat
 | 
						|
 | 
						|
Install LangChain dependencies:
 | 
						|
 | 
						|
```bash
 | 
						|
pip install -U langchain langchain-community
 | 
						|
```
 | 
						|
 | 
						|
In the current directory, run the example with command:
 | 
						|
 | 
						|
```bash
 | 
						|
python chat.py -m MODEL_PATH -q QUESTION
 | 
						|
```
 | 
						|
**Additional Parameters for Configuration:**
 | 
						|
- `-m MODEL_PATH`: **required**, path to the model
 | 
						|
- `-q QUESTION`: question to ask. Default is `What is AI?`.
 | 
						|
 | 
						|
### 4.2. Example: Retrival Augmented Generation (RAG)
 | 
						|
 | 
						|
The RAG example ([rag.py](./rag.py)) shows how to load the input text into vector database, and then use LangChain to build a retrival pipeline.
 | 
						|
 | 
						|
Install LangChain dependencies:
 | 
						|
 | 
						|
```bash
 | 
						|
pip install -U langchain langchain-community langchain-chroma sentence-transformers==3.0.1
 | 
						|
```
 | 
						|
 | 
						|
In the current directory, run the example with command:
 | 
						|
 | 
						|
```bash
 | 
						|
python rag.py -m <path_to_llm_model> -e <path_to_embedding_model> [-q QUESTION] [-i INPUT_PATH]
 | 
						|
```
 | 
						|
**Additional Parameters for Configuration:**
 | 
						|
- `-m LLM_MODEL_PATH`: **required**, path to the model.
 | 
						|
- `-e EMBEDDING_MODEL_PATH`: **required**, path to the embedding model.
 | 
						|
- `-q QUESTION`: question to ask. Default is `What is IPEX-LLM?`.
 | 
						|
- `-i INPUT_PATH`: path to the input doc.
 | 
						|
 | 
						|
 | 
						|
### 4.3. Example: Low Bit
 | 
						|
 | 
						|
The low_bit example ([low_bit.py](./low_bit.py)) showcases how to use use LangChain with low_bit optimized model.LangChain
 | 
						|
By `save_low_bit` we save the weights of low_bit model into the target folder.
 | 
						|
> [!NOTE]
 | 
						|
> `save_low_bit` only saves the weights of the model. 
 | 
						|
> Users could copy the tokenizer model into the target folder or specify `tokenizer_id` during initialization. 
 | 
						|
 | 
						|
Install LangChain dependencies:
 | 
						|
 | 
						|
```bash
 | 
						|
pip install -U langchain langchain-community
 | 
						|
```
 | 
						|
 | 
						|
In the current directory, run the example with command:
 | 
						|
 | 
						|
```bash
 | 
						|
python low_bit.py -m <path_to_model> -t <path_to_target> [-q <your question>]
 | 
						|
```
 | 
						|
**Additional Parameters for Configuration:**
 | 
						|
- `-m MODEL_PATH`: **Required**, the path to the model
 | 
						|
- `-t TARGET_PATH`: **Required**, the path to save the low_bit model
 | 
						|
- `-q QUESTION`: question to ask. Default is `What is AI?`.
 |