ipex-llm/python/llm/example/GPU
Zijie Li bfa1367149
Add CPU and GPU example for MiniCPM (#11202)
* Change installation address

Change former address: "https://docs.conda.io/en/latest/miniconda.html#" to new address: "https://conda-forge.org/download/" for 63 occurrences under python\llm\example

* Change Prompt

Change "Anaconda Prompt" to "Miniforge Prompt" for 1 occurrence

* Create and update model minicpm

* Update model minicpm

Update model minicpm under GPU/PyTorch-Models

* Update readme and generate.py

change "prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)" and delete "pip install transformers==4.37.0
"

* Update comments for minicpm GPU

Update comments for generate.py at minicpm GPU

* Add CPU example for MiniCPM

* Update minicpm README for CPU

* Update README for MiniCPM and Llama3

* Update Readme for Llama3 CPU Pytorch

* Update and fix comments for MiniCPM
2024-06-05 18:09:53 +08:00
..
Applications Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
Deepspeed-AutoTP Update guide for running qwen with AutoTP (#11065) 2024-05-20 10:53:17 +08:00
Deepspeed-AutoTP-FastAPI Fix concurrent issue in autoTP streming. (#11150) 2024-05-29 08:22:38 +08:00
HF-Transformers-AutoModels Add CPU and GPU example for MiniCPM (#11202) 2024-06-05 18:09:53 +08:00
LangChain add langchain vllm interface (#11121) 2024-05-24 17:19:27 +08:00
LlamaIndex Remove oneAPI pip install command in related examples (#11030) 2024-05-16 10:46:29 +08:00
LLM-Finetuning Fix LoRA tokenizer for Llama and chatglm (#11186) 2024-06-03 15:35:38 +08:00
Long-Context Remove oneAPI pip install command in related examples (#11030) 2024-05-16 10:46:29 +08:00
Lookahead/llama2 Add lookahead GPU example (#10785) 2024-04-17 17:41:55 +08:00
ModelScope-Models Remove oneAPI pip install command in related examples (#11030) 2024-05-16 10:46:29 +08:00
Pipeline-Parallel-FastAPI Update installation guide for pipeline parallel inference (#11224) 2024-06-05 17:54:29 +08:00
Pipeline-Parallel-Inference Update installation guide for pipeline parallel inference (#11224) 2024-06-05 17:54:29 +08:00
PyTorch-Models Add CPU and GPU example for MiniCPM (#11202) 2024-06-05 18:09:53 +08:00
Speculative-Decoding Fix IPEX auto importer (#11192) 2024-06-04 16:57:18 +08:00
vLLM-Serving LLM: Add CPU vLLM entrypoint (#11083) 2024-05-24 09:16:59 +08:00
README.md Update installation guide for pipeline parallel inference (#11224) 2024-06-05 17:54:29 +08:00

IPEX-LLM Examples on Intel GPU

This folder contains examples of running IPEX-LLM on Intel GPU:

  • Applications: running LLM applications (such as autogen) on IPEX-LLM
  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on IPEX-LLM (using the standard AutoModel APIs)
  • LLM-Finetuning: running finetuning (such as LoRA, QLoRA, QA-LoRA, etc) using IPEX-LLM on Intel GPUs
  • vLLM-Serving: running vLLM serving framework on intel GPUs (with IPEX-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with IPEX-LLM low-bit optimized models) on Intel GPUs
  • Deepspeed-AutoTP-FastAPI: running distributed inference using DeepSpeed AutoTP and start serving with FastAPI(with IPEX-LLM low-bit optimized models) on Intel GPUs
  • Pipeline-Parallel-Inference: running IPEX-LLM optimized low-bit model vertically partitioned on multiple Intel GPUs
  • Pipeline-Parallel-FastAPI: running IPEX-LLM serving with FastAPI on multiple Intel GPUs in pipeline parallel fasion
  • LangChain: running LangChain applications on IPEX-LLM
  • PyTorch-Models: running any PyTorch model on IPEX-LLM (with "one-line code change")
  • Speculative-Decoding: running any Hugging Face Transformers model with self-speculative decoding on Intel GPUs
  • ModelScope-Models: running ModelScope model with IPEX-LLM on Intel GPUs
  • Long-Context: running long-context generation with IPEX-LLM on Intel Arc™ A770 Graphics

System Support

1. Linux:

Hardware:

  • Intel Arc™ A-Series Graphics
  • Intel Data Center GPU Flex Series
  • Intel Data Center GPU Max Series

Operating System:

  • Ubuntu 20.04 or later (Ubuntu 22.04 is preferred)

2. Windows

Hardware:

  • Intel iGPU and dGPU

Operating System:

  • Windows 10/11, with or without WSL

Requirements

To apply Intel GPU acceleration, therere several steps for tools installation and environment preparation. See the GPU installation guide for mode details.