ipex-llm/python/llm/example/GPU/README.md
Mingyu Wei bc9cff51a8 LLM GPU Example Update for Windows Support (#9902)
* Update README in LLM GPU Examples

* Update reference of Intel GPU

* add cpu_embedding=True in comment

* small fixes

* update GPU/README.md and add explanation for cpu_embedding=True

* address comments

* fix small typos

* add backtick for cpu_embedding=True

* remove extra backtick in the doc

* add period mark

* update readme
2024-01-24 13:42:27 +08:00

1.3 KiB
Raw Blame History

BigDL-LLM Examples on Intel GPU

This folder contains examples of running BigDL-LLM on Intel GPU:

  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on BigDL-LLM (using the standard AutoModel APIs)
  • QLoRA-FineTuning: running QLoRA finetuning using BigDL-LLM on Intel GPUs
  • vLLM-Serving: running vLLM serving framework on intel GPUs (with BigDL-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with BigDL-LLM low-bit optimized models) on Intel GPUs
  • PyTorch-Models: running any PyTorch model on BigDL-LLM (with "one-line code change")

System Support

1. Linux:

Hardware:

  • Intel Arc™ A-Series Graphics
  • Intel Data Center GPU Flex Series
  • Intel Data Center GPU Max Series

Operating System:

  • Ubuntu 20.04 or later (Ubuntu 22.04 is preferred)

2. Windows

Hardware:

  • Intel iGPU and dGPU

Operating System:

  • Windows 10/11, with or without WSL

Requirements

To apply Intel GPU acceleration, therere several steps for tools installation and environment preparation. See the GPU installation guide for mode details.