ipex-llm/python/llm/example/GPU/HF-Transformers-AutoModels/Model/aquila2
Mingyu Wei bc9cff51a8 LLM GPU Example Update for Windows Support (#9902)
* Update README in LLM GPU Examples

* Update reference of Intel GPU

* add cpu_embedding=True in comment

* small fixes

* update GPU/README.md and add explanation for cpu_embedding=True

* address comments

* fix small typos

* add backtick for cpu_embedding=True

* remove extra backtick in the doc

* add period mark

* update readme
2024-01-24 13:42:27 +08:00
..
generate.py [LLM] IPEX auto importer set on by default (#9832) 2024-01-04 13:33:29 +08:00
README.md LLM GPU Example Update for Windows Support (#9902) 2024-01-24 13:42:27 +08:00

Aquila2

In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Aquila2 models. For illustration purposes, we utilize the BAAI/AquilaChat2-7B as a reference Aquila2 model.

Note

: If you want to download the Hugging Face Transformers model, please refer to here.

BigDL-LLM optimizes the Transformers model in INT4 precision at runtime, and thus no explicit conversion is needed.

Requirements

To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to here for more information.

Example: Predict Tokens using generate() API

In the example generate.py, we show a basic use case for a Aquila2 model to predict the next N tokens using generate() API, with BigDL-LLM INT4 optimizations.

1. Install

We suggest using conda to manage environment:

conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu

2. Configures OneAPI environment variables

source /opt/intel/oneapi/setvars.sh

3. Run

For optimal performance on Arc, it is recommended to set several environment variables.

export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT

Arguments Info In the example, several arguments can be passed to satisfy your requirements:

  • --repo-id-or-model-path: str, argument defining the huggingface repo id for the Aquila2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be 'BAAI/AquilaChat2-7B'.
  • --prompt: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be 'AI是什么'.
  • --n-predict: int, argument defining the max number of tokens to predict. It is default to be 32.

Sample Output

BAAI/AquilaChat2-7B

Inference time: xxxx s
-------------------- Prompt --------------------
<|startofpiece|>AI是什么<|endofpiece|>
-------------------- Output --------------------
<|startofpiece|>AI是什么<|endofpiece|>人工智能Artificial Intelligence简称AI是计算机科学中一个极为重要的研究领域旨在让计算机模仿人类的智能包括学习、推理、识别物体