* Add uts for transformers api load_low_bit generation * Small fixes * Remove replit-code for CPU tests due to current load_low_bit issue on MPT * Small change * Small reorganization to llm unit tests on CPU * Small fixes
		
			
				
	
	
		
			80 lines
		
	
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import os
 | 
						|
import pytest
 | 
						|
import tempfile
 | 
						|
import torch
 | 
						|
 | 
						|
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer
 | 
						|
 | 
						|
 | 
						|
mistral_model_path = os.environ.get('MISTRAL_ORIGIN_PATH')
 | 
						|
 | 
						|
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
 | 
						|
 | 
						|
@pytest.mark.parametrize("Model, Tokenizer, model_path, prompt", [
 | 
						|
    (AutoModelForCausalLM, AutoTokenizer, mistral_model_path, prompt)
 | 
						|
])
 | 
						|
    
 | 
						|
def test_optimize_model(Model, Tokenizer, model_path, prompt):
 | 
						|
    tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
						|
 | 
						|
    model = Model.from_pretrained(model_path,
 | 
						|
                                load_in_4bit=True,
 | 
						|
                                optimize_model=False,
 | 
						|
                                trust_remote_code=True)
 | 
						|
    logits_base_model = (model(input_ids)).logits
 | 
						|
 | 
						|
    model = Model.from_pretrained(model_path,
 | 
						|
                                load_in_4bit=True,
 | 
						|
                                optimize_model=True,
 | 
						|
                                trust_remote_code=True)
 | 
						|
    logits_optimized_model = (model(input_ids)).logits
 | 
						|
    diff = abs(logits_base_model - logits_optimized_model).flatten()
 | 
						|
 | 
						|
    assert any(diff) is False
 | 
						|
 | 
						|
@pytest.mark.parametrize('prompt, answer', [
 | 
						|
    ('What is the capital of France?\n\n', 'Paris')
 | 
						|
    ])
 | 
						|
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
 | 
						|
    (AutoModelForCausalLM, AutoTokenizer, mistral_model_path),
 | 
						|
    ])
 | 
						|
def test_load_low_bit_completion(Model, Tokenizer, model_path, prompt, answer):
 | 
						|
    tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    model = Model.from_pretrained(model_path,
 | 
						|
                                  load_in_4bit=True,
 | 
						|
                                  optimize_model=True,
 | 
						|
                                  trust_remote_code=True)
 | 
						|
    
 | 
						|
    with tempfile.TemporaryDirectory() as tempdir:
 | 
						|
        model.save_low_bit(tempdir)
 | 
						|
        loaded_model = Model.load_low_bit(tempdir,
 | 
						|
                                          optimize_model=True,
 | 
						|
                                          trust_remote_code=True)
 | 
						|
 | 
						|
        with torch.inference_mode():
 | 
						|
            input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
						|
            output = loaded_model.generate(input_ids, max_new_tokens=32)
 | 
						|
            output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
 | 
						|
            assert answer in output_str
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    pytest.main([__file__])
 |